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Abstract

The reason for using distributed constraint satisfaction
algorithms is often to allow agents to find a solution while
revealing as little as possible about their variables and con-
straints. So far, most algorithms for DisCSP do not guaran-
tee privacy of this information. This paper describes some
simple techniques that can be used with DisCSP algorithms
such as DPOP, and provide sensible privacy guarantees
based on the distributed solving process without sacrificing
its efficiency.

1 Introduction

Many practical situations require the coordination of ac-
tions of different agents. For example, consider allocation
of airport takeoff and landing slots. Currently, each air-
port allocates slots individually [9]. However, airlines need
combinations of slots to operate sequences of flights. Simi-
lar situations exist when sharing pipelines, electricity grids,
and other infrastructure among competing agents.

A consideration that often prohibits such coordinated de-
cisions is the desire to keep coordination constraints private.
For example, in airport slot allocation, airlines do not want
competitors to find out what routes they intend to fly, as this
can be used to counter their strategy. As security breaches
are frequent in modern information systems, they would not
entrust a central platform with this information either.

One possibility to nevertheless achieve coordination is to
use a distributed algorithm where agents are themselves re-
sponsible for applying the coordination constraints. Several
authors have proposed distributed algorithms for constraint
satisfaction and optimization, such as ABT [19], AWC [19],
AAS [16], ADOPT [12], OPTAPO [11] and DPOP [13].
Surprisingly, despite the privacy motivation, none of these
algorithms gives privacy guarantees, and any particular in-
formation could be leaked in the right circumstances.

There is significant earlier work on how to measure the
privacy loss of these algorithms. Franzin et al. ([5]) mea-
sure privacy loss as the reduction in entropy of other agents’
preferences. Maheswaran et al. ([10]) develop a frame-
work called valuations of possible states that measures pri-
vacy loss as the degree to which the possible states of other
agents are reduced. Greenstadt ([7]) uses this framework to
analyze privacy loss of DPOP and ADOPT.

While it is important to measure privacy loss, in prac-
tice it is important to be able to give guarantees that certain
information is not revealed by an algorithm. Brito ([2, 3])
has developed various methods for reducing privacy loss in
search and in particular to protect privacy of a constraint
from agents involved in it. Greenstadt ([6]) proposes an al-
gorithm, SSDPOP that uses cryptographic secret sharing to
eliminate a major source of privacy loss in DPOP, but does
not entirely eliminate privacy loss.

Cryptography provides solutions for secure multiparty
computation that can in principle solve constraint satis-
faction problems with total privacy. This field focusses
in particular on interactions between a small number of
agents, such as scheduling a single meeting [8], the mil-
lionaire’s problem of comparing numbers without revealing
them [18], or secure auction protocols [1]. These techniques
can in principle be extended to more complex scenarios
such as constraint satisfaction, but their complexity quickly
becomes unmanageable. Examples using cryptographic cir-
cuits are [15, 14]. Other algorithms perform search and
protect values with homomorphic encryption, in particular
[17, 20]. However, such search-based algorithms can leak
information through the computation time required to find
a solution.

In this paper, we show how an existing algorithm for
distributed constraint satisfaction, DPOP, can be adapted
to give the required privacy guarantees with no increase in
complexity and thus solve problems of realistic size. The
techniques can also be applied to search-based algorithms
such as ADOPT, with the caveat that additional information
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is leaked through the computation time of the search.
Throughout the paper, we will use the simple example

of three agents A, B and C, interested in two resources y
and z. Agent A is interested in getting either one of the two
resources (OR constraint), agent B also wants either one,
but not both (XOR constraint), and agent C wants either
both resources or none (equality constraint). For example,
agents could be airlines and resources could be landing slots
at different airports. In another interpretation, agents could
be oil companies and resources could be storage tanks.

In this example, a solution is for instance to give re-
source y to agent A, resource z to B, and no resource to C.
Note that some information is revealed by the fact that each
agent finds out the values its variables take in the final solu-
tion: for example C will know that some other agents asked
for and obtained either resource y or z, since it didn’t get its
request satisfied. No algorithm can avoid this information
loss, so agents that cannot accept it need to avoid it through
appropriate modeling or other means.

In a problem with multiple solutions, participants must
accept to leak the information associated with any of the
solutions, since they cannot control which solution will be
reached. We call the information that can be inferred from
potential solutions the semi-private information. Impor-
tantly, the techniques in this paper do not protect semi-
private information, since agents must accept that this might
be leaked by the final solution.

We distinguish four types of privacy guarantees:
Agent privacy: no agent can learn the identity of any

other agent unless they share a coordination constraint. For
example, agent A cannot discover the identity of agent B.
Definition: An algorithm for DisCSP preserves agent pri-
vacy when no agent learns the identity of the agent control-
ling any variable xj that does not share a constraint with
another variable xi controlled by this agent.

Topology privacy: no agent can learn anything about
topological constructs (constraints, cycles) that do not in-
volve a variable that it has a constraint with. For example,
agent A cannot find out that another agent has a constraint
over resources y and z.
Definition: An algorithm for DisCSP preserves topology
privacy if no agent learns about the existence of either con-
straints or cycles of constraints that do not involve at least
one variable it controls.

Constraint privacy: no agent can learn the nature or
contents of constraints in which it is not involved in. For
example, A cannot find out that B wants y XOR z. In an
optimization setting, A cannot discover what value B at-
taches to obtaining y or z, in case it has any preference for
one resource or the other.
Definition: An algorithm for DisCSP preserves full con-
straint privacy if an agent does not learn the cost of any
particular tuple in a constraint that does not involve any

variable it controls, except for semi-private information.
It preserves limited constraint privacy if the information

that it can learn about such a tuple is bounded by a threshold
ε and ε can be made arbitrarily small by suitable choice of
protocol parameters.

Decision privacy: no agent can discover the outcome of
any decision that other agents make in the final solution.
Definition An algorithm for DisCSP preserves full decision
privacy if no agent can learn the values of any variable that it
does not control in the final solution, except for semi-private
information.

An algorithm for DisCSP preserves limited decision pri-
vacy if no agent can learn the values of any variable that it
does not control and is not part of the neighbourhood of a
variable it controls, except for semi-private information.

In this paper, we show how the DPOP algorithm can be
adapted to provide these four types of privacy guarantees.

2 Preliminaries

2.1 Distributed Constraint Satisfaction

Definition 1 (DisCSP) A discrete distributed constraint
satisfaction problem (DisCSP) is a tuple < A,X ,D, C >:

• A = {a1, ..., ak} is a set of agents

• X = {x1, ..., xn} is a set of variables. Each variable
xi is controlled by an agent a(xi)

• D = {d1, ..., dn} is a set of finite variable domains

• C = {c1, ..., cm} is a set of constraints, where each
constraint ci is a function of scope (xi1 , · · · , xil), ci :
di1 × .. × dil → {0, 1}, assigning 0 to feasible tu-
ples, and 1 to infeasible ones. Constraints are known
to all agents that control a variable involved in the con-
straint.

A solution is a complete assignment such that the cost∑
ci∈C ci = 0, which is the case exactly when it is con-

sistent with all constraints. We can thus understand these
values as a cost. The framework can be extended to partial
satisfaction or general constraint optimization by finding an
assignment that minimizes the cost and letting constraints
be general real functions.

In the following, we assume that all agents know the
number n of variables in the problem, that the graph
formed by the constraints is connected (otherwise each sub-
problem can be solved independently), and that all agents
that control variables in a given constraint can communi-
cate securely. We also assume that all constraints are either
unary or binary, which is a common assumption in the liter-
ature that can be made without loss of generality. In a slight
abuse of language, we also sometimes indifferently write
“variable xi” instead of “agent a(xi).”
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Example: Resource Allocation as DisCSP: To illus-
trate the methods, we are going to use an example of re-
source allocation which represents one large class of appli-
cations. Other applications include coordination of multi-
agent plans or distributed interpretation of sensor data, and
any other constraint satisfaction problem.

We model resource allocation examples by two sets of
variables x and x̂. xb

a is controlled by the agent offering
resource b and takes value 1 if it allocates resource b to agent
a and 0 otherwise. x̂b

a is a variable controlled by agent a and
constrained to be equal to xb

a. Three types of constraints
exist on these variables:

1. Each resource b can only be assigned to at most one
agent, so for any pair of variables xb

a and xb
c, the com-

bination of assignments where they are both assigned 1
is infeasible.

2. Each agent has private constraints on the feasible com-
binations of resource assignments. For example, since
agent A is interested in getting at least one of the re-
sources, then cA(x̂y

A = 0, x̂z
A = 0) = 1 and cA = 0 in

all other cases.

3. Corresponding x and x̂ must have equal values.

Constraints of type 1 and 2 must be kept private to the corre-
sponding agents, for they would otherwise reveal important
competitive information to competing agents. As shown in
the constraint graph of Figure 1, these can in fact be seen as
constraints internal to the agents that define them. The only
inter-agent constraints are the constraints of type 3, which
should also be kept private to the agents that control the cor-
responding variables.

2.2 Depth-First Search (DFS) Trees

Our algorithm works on a Depth-First Search (DFS)
traversal of the constraint graph. It constructs a spanning
tree consisting of the constraints used to discover the nodes
and linking parents to children by edges called tree edges.
All other constraints become back edges that link pseudo-
parents to pseudochildren. Because of the DFS tree con-
struction, all pseudoparents are also ancestors in the span-
ning tree.

The separator Sepi of xi is the set of ancestors of xi

whose removal disconnects the subtree rooted at xi from
the rest of the tree. A node’s separator can be determined
recursively: for a leaf, it is the union of its parent and all
pseudoparents; and for a non-leaf node, the union of its par-
ent, pseudoparents, and its children’s separators, minus it-
self.
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Figure 1. Constraint graph corresponding
to the example in which A wants y OR z,
B wants y XOR z, and C wants either both
y and z or none.
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Figure 2. One DFS tree for the example.
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2.3 DPOP: Distributed Pseudotree Opti-
mization Protocol

DPOP ([13] implements a bucket elimination
scheme ([4]) as a distributed protocol. DPOP has 3
phases:

Phase 1 – DFS Tree Generation: A DFS tree is ob-
tained from the constraint graph (as in Figure 2) by first
running a decentralized leader election algorithm in order
to decide upon the root of the pseudotree. Once the root
has been identified, it initiates a decentralized DFS traver-
sal of the graph. As a result, each node consistently labels
its neighbors as parent/child or pseudoparent/pseudochild.
The DFS tree serves as a communication structure for the
other two phases of the algorithm: UTIL messages (Phase
2) travel bottom-up, and VALUE messages (Phase 3) travel
top-down, only via tree-edges. Sibling nodes do not ex-
change any messages.

Phase 2 – UTIL Propagation: The agents (starting from
the leaves) send UTIL messages to their parents. The sub-
tree of a node Xi can influence the rest of the problem only
through Xi’s separator, Sepi. Therefore, a UTIL message
contains the optimal cost obtained in the subtree for each
instantiation of Sepi.

Phase 3 – VALUE Propagation: This is a top-down
propagation initiated by the root, when Phase 2 has finished.
Each node determines its optimal value based on computa-
tion from Phase 2 and the VALUE message it receives from
its parent. Then, it sends this value to its children through
VALUE messages.

It has been proven in [13] that DPOP produces a linear
number of messages. Its complexity lies in the size of the
UTIL messages: the largest one is space-exponential in the
induced width of the DFS ordering used.

2.4 Privacy Loss in DPOP

In DPOP, privacy is lost along all four dimensions listed
in the introduction as a result of executing each of DPOP’s
three phases. Specifically, in the DFS construction phase,
agents learn the identity of all their ancestors (even the ones
with whom they are not connected), and the existence and
identity of back-edges in the DFS. In the example from
Figure 2, agent A learns about agent B as its ancestor,
and agent z learns about the existence of agent y, and that
agent C has a constraint with agent y.

Second, in the UTIL propagation phase, all the costs
passed in the messages are in clear text, and thus transpar-
ent to every agent. Some information is semi-private, for
example an agent learn what values are feasible for its own
variables under different circumstances. However, the algo-
rithm also leaks consistency information about the variables
controlled by other agents: for example, agent z could learn

that certain assignments of xy
A and xy

C are not feasible for
A and C.

Third, in the VALUE propagation phase, agents learn as-
signments of other variables. For example, agent z receives
the final assignments for variables xy

A and xy
C in clear text,

as this is required for z to make its own final decision.

3 P-DPOP: Privacy Guarantees for DPOP

This section introduces P-DPOP (Algorithm 1), an al-
gorithm for DisCSP that provides privacy guarantees. P-
DPOP is derived from DPOP by adding measures that pro-
tect privacy during the DFS tree construction, UTIL and
VALUE propagation stages. These are described in detail
in the following sections.

Algorithm 1: P-DPOP: DPOP with privacy guarantees
P-DPOP(A,X ,D, C)

Initialization:
For each binary constraint c(x, y) ∈ C, agent a(x)1

generates a vector of random obfuscating keys O(x)
that it sends to agent a(y), which does likewise
For each variable xi ∈ X , agent a(xi) generates a2

codename C(xi), and codenames C(v1), . . . , C(vk)
for xi’s domain values, and sends them to all agents
owning a variable linked to xi by a constraint

Anonymous DFS construction:
Choose root of DFS tree using Algorithm 23

Construct DFS labelling using Algorithm 34

UTIL propagation:
Wait for UTIL messages from all children5

Partially deobfuscate received UTIL messages using6

known keys and codenames
As in DPOP, join resulting messages with own unary7

constraints and binary constraints involving
(pseudo-)parents’ variables; project xi out
Obfuscate result and send to parent8

VALUE propagation:
Wait for VALUE message from parent; deobfuscate it9

Compute optimal value v∗i for xi10

Send VALUE messages to all children using the11

codenames C(xi) and C(v∗i )

3.1 Privacy in DFS Construction

The DFS tree is created in a distributed fashion following
a message exchange protocol in which agents only commu-
nicate with their neighbors in the constraint graph. It con-
sists of two phases: first, a process of anonymous leader
election makes one variable as the root of the tree; second,
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Algorithm 2: Anonymous leader election.
1: elect leader(a)
2: Generate unique obfuscated identifying number ID
3: max ← rand(0 . . .ID)
4: nb lies ← rand(n . . . 2n)
5: for nb lies times do
6: Send max to all neighbors
7: Get max1 . . . maxk from all neighbors
8: max tmp ← max(max, max1, . . . , maxk)
9: max ← rand(max tmp . . .max(ID, max tmp))

10: max ← max(max, ID)
11: for (3n − nb lies) times do
12: Send max to all neighbors
13: Get max1 . . . maxk from all neighbors
14: max ← max(max, max1, . . . , maxk)
15: if max = ID then
16: Choose any of the agent’s variables xr and mark it

as the root of the DFS tree

a distributed DFS tree generation protocol categorizes each
node’s neighbours and thus builds the distributed tree data
structure. Both phases guarantee strong agent privacy and
topology privacy.

Anonymous leader election (Algorithm 2): To deter-
mine the root variable, each agent a ∈ A executes the
anonymous leader election algorithm given as Algorithm 2.
We assume that each agent has a unique identifier, for ex-
ample its MAC address. It anonymizes this number, for
instance by taking it as exponent in a finite field exponen-
tiation, to generate a unique obfuscated identifying num-
ber ID. The protocol then consists, for each agent, in send-
ing its ID number to its neighbors, updating it to the maxi-
mum of its ID and its neighbors’, and then repeating these
two steps such that the knowledge of the maximum ID
propagates progressively to all agents. In the end, only one
agent has its initial ID number equal to the computed max-
imum; this agent is the leader, and picks one of its vari-
ables xr to be the root of the tree. This protocol converges
in n steps, where n is the maximum distance of any two
nodes in the graph, for which the number of nodes in the
problem is an upper bound. Thus, the algorithm needs to
know an upper bound on the number of nodes in the prob-
lem, which is reasonable for almost any practical instance.

A shortcoming of this protocol is that the neighbours of
the root agent receive the maximum ID in the first cycle,
and can thus tell who the root is. This is avoided by first
letting the agents give a random lower number and substi-
tuting the true ID at an unknown randomly chosen time. In
this way, the protocol does not leak any information about
the topology of the constraint graph.

Algorithm 3: Distributed DFS traversal.
1: DFS traversal(x)
2: Mark all neighbours as open ;
3: if x is marked as the root variable xr then
4: Mark next open neighbor as child and send it a

CHILD token
5: loop
6: Wait for incoming token
7: if received very first CHILD token and x is not xr

then
8: Mark sender as parent
9: else if received CHILD token from open neighbor

then
10: Mark sender as pseudo-child and reply with a

PSEUDO token
11: if received PSEUDO token then
12: Mark sender as pseudo-parent
13: else if has open neighbor then
14: Mark next open neighbor as child and send it a

CHILD token
15: else
16: Send CHILD token to parent (if x is not xr) and

terminate ;

Distributed DFS traversal (Algorithm 3): Once the root
variable xr has been marked, the actual DFS construction
protocol can be started by executing Algorithm 3 for each
node x ∈ X . Each variable knows its neighbours, which
are the variables that it shares a constraint with. It assigns
one of the following labels to each neighbor: open, parent,
child, pseudo-parent and pseudo-child. Initially, all neigh-
bors are open. The root variable starts by sending a CHILD
token that will traverse the constraint graph in DFS order.
When a non-root variable receives its very first CHILD to-
ken, it marks the sender as its parent, and forwards the to-
ken to its next open neighbor, which it marks as a child.
When the variable runs out of open neighbors, it resends the
CHILD token to its parent, hereby telling it that its whole
subtree has been explored, and can proceed with the next
phase of the P-DPOP algorithm. When a variable receives
the CHILD token from the variable it previously sent it to,
it knows it can forward it to its next open neighbor, which it
marks as another child. However, if it receives the CHILD
token from a different, still open neighbor, it can infer there
is a cycle in the constraint graph. It then marks the sender as
a pseudo-child, and replies with a special PSEUDO token to
notify it of their pseudo-child/pseudo-parent relationship.
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Table 1. Message UTILA→z in DPOP (left) and
P-DPOP(right).

xy
A = 0 xy

A = 1
xz

A = 0 1 0
xz

A = 1 0 0

Γ = α Γ = β
xz

A = 0 12346 23456
xz

A = 1 12345 23456

3.2 Constraint Privacy in UTIL Phase via
Obfuscation

Observe first that if the constraint graph is a tree, then
agents only learn about their direct neighbors and so both
agent and constraint privacy are guaranteed also during
UTIL and VALUE propagation phases.

However, privacy problems can arise from the presence
of a back edge. A tree edge in the DFS tree could be called
upon to transmit a multidimensional message that refers to
another agent elsewhere in the tree (namely, the root of the
back edge). For instance, in DPOP, agent A would send the
message UTILA→z in Table 1(left) to agent z, containing
references to the agent offering resource y, whose identity
A might want to hide from z, and also and more importantly
from possible competing agents that could be asked to relay
this information to y (such as agent B).

We identify the corresponding variable’s name as well as
its different values by codenames that are only known to the
agents at both ends of the back edge. In this way, agents in
between do not know what variable the message refers to,
nor the possible values for this variable. The codenames are
generated by the pseudoparent of the back edge and com-
municated through a secure channel to its pseudochild at
the other end of the back edge. Often, a back edge will link
variables belonging to the same agent and the secure chan-
nel is trivial to establish. Otherwise, there are numerous se-
cure protocols that can be used for this. In this example, the
agent offering resource y decides to represent xy

A = 0 by
Γ = α, and xy

A = 1 by Γ = β, and sends these codenames
to agent A.

The use of codenames still leaves open the possibility
that an agent recognizes the meaning of a message through
the values it carries. For example, in a resource alloca-
tion problem, an inconsistency usually arises from the non-
allocation of a resource. Furthermore, the pattern of con-
sistencies itself can be valuable information that should be
protected.

Our solution is to obfuscate constraints by adding large
random numbers to their values. If the same number is
added uniformly to all values that need to be compared, the
results of the comparisons will be unaffected by this ob-
fuscation. This makes it possible to carry out the essential
dynamic programming operations on obfuscated numbers

Table 2. Obfuscated UTIL message UTILC→z

obtained by using the codenames ∆ for vari-
able xy

C , γ for 0 and δ for 1, and the vector of
random numbers O(xy

C) = (34567, 56789).

∆ = γ ∆ = δ
xz

C = 0 34567 56790
xz

C = 1 34568 56789

Table 3. Join of the two UTIL messages
UTILA→z and UTILC→z.

∆ = γ ∆ = δ
Γ = α Γ = β Γ = α Γ = β

xz
C = 0 xz

A = 0 46913 58023 69136 80246
xz

A = 1 46912 58023 69135 80246

xz
C = 1 xz

A = 0 46914 58024 69135 80245
xz

A = 1 46913 58024 69134 80245

while revealing only certain kinds of information.
For instance, when receiving the message UTILA→z,

the agent offering resource z could infer that there is an OR
constraint between its variable xz

A and some other variable
(represented by the codename Γ). This is a piece of in-
formation that agent A might not want to reveal. To ob-
fuscate it, the agent offering resource y sends through a
secure channel a vector of secret, large random numbers
O(xy

A) = (12345, 23456) to agent A, which is going to add
them to all costs in its message corresponding to xy

A = 0
and xy

A = 1, respectively. The resulting obfuscated UTIL
message is presented in Table 1.

When receiving the obfuscated message UTILA→z, the
agent is no longer able to compare the two columns, be-
cause they have been added two different, unknown num-
bers. However, it is still able to compare the rows, which
is necessary to carry out its local operations on the received
cost values. In particular, it can compute the join of the ob-
fuscated message UTILA→z from agent A with the other
obfuscated message UTILC→z (Table 2) received from
agent C, without de-obfuscating them. The result of this op-
eration is presented in Table 3, and is a doubly-obfuscated
message with respect to variables xy

A and xy
C .

The agent offering resource z then joins this matrix with
its constraint xz

A+xz
B +xz

C ≤ 1 (which consists in adding 1
to cost values corresponding to xz

A + xz
B + xz

C > 1), and
then projects out variables xz

A and xz
C . This projection is

done by comparing cost values row-wise, which is feasible
without de-obfuscation since the rows have been added the
same vector of numbers. The result is presented in Table 4,
and corresponds to the message that is sent to agent B.
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Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on February 17,2010 at 11:37:50 EST from IEEE Xplore.  Restrictions apply. 



Table 4. Utility message UTILz→B.
∆ = γ ∆ = δ

Γ = α Γ = β Γ = α Γ = β
x̂z

B = 0 46912 58023 69135 80245
x̂z

B = 1 46913 58023 69135 80246

Table 5. UTIL message UTILB→y.
∆ = γ ∆ = δ

Γ = α Γ = β Γ = α Γ = β
xy

B = 0 46913 58023 69135 80246
xy

B = 1 46912 58023 69135 80245

Upon receipt of this message, agent B is able to infer
that the minimum cost achievable by its subtree depends
not only on its decisions (i.e. the value assigned to vari-
able x̂z

B), but also on two other variables represented by
the codenames Γ and ∆. However, it does not know what
these codenames refer to. Furthermore, for a given value
of x̂z

B , it does not know how the minimum achievable cost
depends on Γ and ∆, since it cannot compare columns with-
out knowing the secret numbers that were used to obfuscate
them.

As described previously, the agent can still carry out its
local computations without de-obfuscating the cost values.
In particular, it first joins the received UTIL message with its
XOR constraint, which corresponds to adding 1 to cost val-
ues corresponding to x̂y

B = x̂z
B . Projecting out variable x̂z

B
then yields the message UTILB→y (Table 5) that is sent
to the agent offering resource y. Again, this projection can
be carried out without de-obfuscation, since all costs on the
same column have been added the same random number,
and the projection is done by comparing costs row-wise.

The agent is then able to de-obfuscate the message sim-
ply by subtracting the vector of secret random numbers
O(xy

A) = (12345, 23456) from the columns correspond-
ing to (Γ = α, Γ = β), and O(xy

C) = (34567, 56789) from
(∆ = γ, ∆ = δ). Finally decoding the codenames yields
the cost matrix in Table 6. Joining this with the constraint
xy

A + xy
B + xy

C ≤ 1 (i.e. adding 1 to all costs that violate
this constraint) yields the final cost matrix in Table 7.

Based on this cost matrix, the agent can choose one of

Table 6. De-obfuscated UTIL message
UTILB→y.

xy
C = 0 xy

C = 1
xy

A = 0 xy
A = 1 xy

A = 0 xy
A = 1

xy
B = 0 1 0 1 1

xy
B = 1 0 0 1 0

Table 7. Join of UTILB→y with the constraint
xy

A + xy
B + xy

C ≤ 1.

xy
C = 0 xy

C = 1
xy

A = 0 xy
A = 1 xy

A = 0 xy
A = 1

xy
B = 0 1 0 1 2

xy
B = 1 0 1 2 1

the two feasible decisions (with a cost of 0), which are to
assign its resource y to A or to B, respectively.

3.3 Limited Decision Privacy through the
Use of Codenames

During the VALUE propagation phase, decisions are
made and sent down the tree. In order to provide the same
level of privacy as during the UTIL propagation phase, vari-
ables and values are referred to by their codenames. For
instance, if xy

B = 0 is chosen as the optimal decision, then
the agent offering resource y sends the message

V ALUEy→B = {xy
B = 0, Γ = β, ∆ = γ}

to agent B, which is then not able to learn that resource y
was assigned to the competing agent A.

In most applications, agents will learn the values chosen
for variables they have constraints with anyway, so limited
decision privacy is sufficient. For instance, in our exam-
ple, agent B would eventually be able to infer the value of
variable xy

B from the value of its variable x̂y
B anyway, since

they are constrained to be equal. However, we recognize
that there may be applications that require full decision pri-
vacy.

3.4 Privacy Properties

Proposition 1 Algorithms 1,2 and 3 preserve agent pri-
vacy.

Proof: All variables are identified by codenames. Code-
names of variables are only communicated between agents
that control variables in the same constraint, and agents
have no other way of learning codenames.

Proposition 2 Algorithms 1,2 and 3 preserve topology pri-
vacy.

Proof: Variables are identified by codenames. Thus,
both in the leader election and in the DFS tree generation,
an agent does not learn anything other than the codename
about agents that it is does not share a constraint with.
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Further information can be inferred from the constructed
DFS tree. Here, the presence of a backedge shows the ex-
istence of a cycle in the constraint graph. Note that, if the
backedge occurs in the propagation from variable xi, it in-
dicates a cycle that involves this variable xi. Thus, it does
not leak information about any topological element that xi

is not involved in, and so topology privacy is preserved.

Proposition 3 Algorithm 1 preserves limited constraint
privacy.

Proof: Information about constraints is transmitted dur-
ing the UTIL propagation phase. Privacy could be violated
in two ways: (i) by inference from an obfuscated version of
a value (or values correlated to it) to the value itself and (ii)
by inference from combinations of values obfuscated with
the same key. We prove the protection of the obfuscation in
this order.

Let X ∈ {0, 2l} identify the cost of a particular tuple (in
this case, it is the number of conflicts entailed by that tu-
ple). An eavesdropping agent A may observe k obfuscated
versions of this value or other values that are highly corre-
lated with it; let us call these Y = Y1, .., Yk and assume that
they are all known to represent the same value. The princi-
ple is that the value could be guessed by considering that
the mean of the distribution of the Y is shifted by X . Each
value is obfuscated with a different and statistically inde-
pedent Zi ∈ {0, 2m}. Then the information that Y1, .., Yk

gives about X is:

I(Y ; X) = I(X ; Y ) = H(Y ) − H(Y |X)

= H(Y ) −
k∑

i=1

H(Yi|X)

= H(Y ) −
k∑

i=1

Zi

Now Yi ∈ {X, X + 2m} and H(Yi) ≤ log(X + 2m), and
also H(Y ) ≤ klog(X + 2m) because of independence. So
we have that

I(Y ; X) ≤ k(log(X + 2m) − log(2m))
≤ k(log((2l + 2m)/2m) = klog(1 + 2(l−m))

Thus, the bound on the information that the obfuscated ob-
servations give about the cost can be made arbitrarily small
by increasing m, and we can reach any desired level of pri-
vacy.

The second way to infer information from the obfuscated
numbers is to exploit the fact that the same random number
Yi must be used to obfuscate an entire column of the UTIL
message. In particular, the agent that owns a variable xj

can tell the differences in cost of different values for this

variable. To use this information for inference about par-
ticular tuples would require background information about
at least one of the values, for example knowing the mini-
mum or maximum cost value. However, this information
is not available to the agent; even the distribution of cost
values cannot be used to make inferences about minima or
maxima as it is self-similar and so does not reveal anything
about the absolute values.

The exception is that in the VALUE propagation phase,
the agent finds out that a certain combination of value as-
signments for other variables leads to a consistent solution,
thus allowing it to infer that the minimum value in the corre-
sponding column is zero. Consequently, for any other value
in the column it can tell that it has k conflicts. For k = 0 (no
conflict), this is semi-private information, as each of them
corresponds to a consistent solution of the CSP and would
thus be leaked by that solution. When k '= 0, there are
special cases such as functional constraints where knowing
that a certain value has k conflicts can be used to infer that a
value of another connected variable has k or k−1 conflicts.
However, because of topology privacy, the agent does not
know what constraints these conflicts result from, and thus
cannot infer anything about their tuples. Hence, the only
information that can be gained is semi-private information.

Proposition 4 Algorithm 1 preserves limited decision pri-
vacy.

Proof: During VALUE propagation, agents learn deci-
sions for variables that they are either share a constraint
with or that are part of a backedge that is part of the sep-
arator they control. When they share a constraint with the
variable, limited decision privacy is not violated. Variables
involved in backedges are identified by codenames, as are
the values that they take. Unless they share a constraint, the
agent does not know the meaning of either codename, and
thus cannot infer either the variable nor the value that it has
taken.

Because of constraint privacy, the decision on one vari-
able does not allow inferring the decision of another vari-
able. Thus, limited decision privacy is preserved.

4 Conclusions

Distributed constraint satisfaction and optimization has
been studied for many years, and privacy has often been
cited as a primary reason for using distributed algorithms.
In this paper, we show how an existing algorithm for dis-
tributed constraint satisfaction, DPOP [13], can be adapted
to give the required privacy guarantees with no increase in
algorithmic complexity. Note however that certain heuris-
tics, for example for generating good DFS orderings, inter-
fere with privacy and this could hurt efficiency. However,
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compared with earlier cryptographic solutions the algorithm
is still much more efficient and can thus solve problems of
realistic size.

While the method we presented does not guarantee com-
plete privacy, we observe that the level of privacy afforded
by this algorithm is sufficient for almost all application sce-
narios. For example, in slot allocation airports will want to
know what airlines are asking for what slots, and thus the
constraints are known to all involved agents anyway. Like-
wise, in the solution it will become obvious which airline
was allocated which slot by observing their actual opera-
tions, so there is no need to protect the privacy of values.
On the other hand, it is important that competing airlines
do not learn about the constraints of others, and this is pro-
tected by the algorithm we proposed. A similar situation
exists in combinatorial auctions and other resource alloca-
tion problems. For coordination problems, it is clear that
agents must know their coordination constraints and the de-
cisions taken on coordination with other agents.

We note that the methods described here work equally
well for partial constraint satisfaction or even general op-
timization when the scope of constraint valuations is ex-
tended from {0, 1} to the real numbers. However, such set-
tings pose additional issues of self-interest as agents will
have an interest to drive solutions towards those that satisfy
their interest best. These can be addressed with economic
mechanisms but these are beyond the scope of this paper.

The methods described here can be also be applied in
the context of other distributed constraint satisfaction algo-
rithms. For example, obfuscation and codenames could be
used with search algorithms such as ADOPT and NCBB.
However, as pointed out in [15], such algorithms leak infor-
mation through the runtime of the solving process itself, so
the value of privacy guarantees is not as clear.
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