Privacy Guarantees through
Distributed Constraint Satisfaction

Boi Faltings, Thomas Léauté, and Adrian Petcu

Artificial Intelligence Laboratory
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{boi.faltings, thomas.leaute, adrian.petcu}@epfl.ch
http://liawww.epfl.ch/

LIA-REPORT-2008-012

Abstract. In Distributed Constraint Satisfaction Problems, agents of-
ten desire to find a solution while revealing as little as possible about
their variables and constraints. So far, most algorithms for DisCSP do
not guarantee privacy of this information. This paper describes some
simple obfuscation techniques that can be used with DisCSP algorithms
such as DPOP, and provide sensible privacy guarantees based on the
distributed solving process without sacrificing its efficiency.

Key words: Distributed Constraint Satisfaction/Optimization, privacy

1 Introduction

Many practical situations require the coordination of actions of different agents.
For example, consider allocation of airport takeoff and landing slots. Currently,
each airport allocates slots individually [1]. However, airlines need combinations
of slots to operate sequences of flights. Similar situations exist when sharing
pipelines, electricity grids, and other infrastructure among competing agents.

A consideration that often prohibits such coordinated decisions is the desire
to keep coordination constraints private. For example, in airport slot allocation,
airlines do not want competitors to find out what routes they intend to fly, as
this can be used to counter their strategy. As security breaches are frequent in
modern information systems, they would not entrust a central platform with
this information either.

One possibility to nevertheless achieve coordination is to use a distributed
algorithm where agents are themselves responsible for applying the coordination
constraints. Several authors have proposed distributed algorithms for constraint
satisfaction and optimization, such as ABT [2], AWC [2], AAS [3], ADOPT [4],
OPTAPO [5] and DPOP [6]. However, none of these algorithms gives privacy
guarantees, and any particular information could be leaked in the right circum-
stances.



2 Privacy Guarantees through Distributed Constraint Satisfaction

There is significant earlier work on how to measure the privacy loss of these
algorithms. Franzin et al. [7] measure privacy loss as the reduction in entropy of
other agents’ preferences. Maheswaran et al. [8] develop a framework called Val-
uations of Possible States that measures privacy loss as the degree to which the
possible states of other agents are reduced. Greenstadt [9] uses this framework
to analyze privacy loss of DPOP and ADOPT.

While it is important to measure privacy loss, in practice it is important to be
able to give guarantees that certain information is not revealed by an algorithm.
Brito [10, 11] has developed various methods for reducing privacy loss in search
and in particular to protect privacy of a constraint from agents involved in it.
Greenstadt [12] proposes an algorithm that uses cryptography to eliminate a
major source of privacy loss in DPOP. Some algorithms have been proposed
that maintain total privacy, but these rely on secure multiparty computation
that is too complex to be used in practical applications [13-15].

In this paper, we show how an existing algorithm for distributed constraint
satisfaction, DPOP, can be adapted to give the required privacy guarantees with
no increase in complexity and thus solve problems of realistic size.

Throughout the paper, we will use the simple example of three airlines A,
B and C, interested in two slots y and z at two different airports. Airline A is
interested in getting either one of the two slots (OR constraint), airline B also
wants either one, but not both (XOR constraint), and airline C' wants either
both slots or none (equality constraint).

In this example, a solution is for instance to give slot y to airline A, slot z
to B, and no slot to C. Note that some information is revealed by the fact that
each agent finds out the values its variables take in the final solution: for example
C will know that some other agents asked for and obtained either slot y or z, since
it did not get its request satisfied. No algorithm can avoid this information loss,
so agents that cannot accept it need to avoid it through appropriate modeling
or other means.

In a problem with multiple solutions, participants must accept to leak the
information associated with any of the solutions, since they cannot control which
solution will be reached. We call the information that can be inferred from
potential solutions the semi-private information. Importantly, the techniques in
this paper do not protect semi-private information, since agents must accept
that this might be leaked by the final solution.

We distinguish four types of privacy guarantees:

— Agent privacy: no agent can learn the identity of any other agent unless they
share a coordination constraint. For example, airline A cannot discover the
identity of airline B.

Definition 1. An algorithm for DisCSP preserves agent privacy when no
agent a; learns the identity of the agent controlling any variable x; that does
not share a constraint with another variable x; controlled by agent a;.

— Topology privacy: no agent can learn anything about topological constructs
(constraints, cycles) that do not involve a variable that it has a constraint



Privacy Guarantees through Distributed Constraint Satisfaction 3

with. For example, airline A cannot find out that another airline has a con-
straint over slots y and z.

Definition 2. An algorithm for DisCSP preserves topology privacy if no
agent learns about the existence of either constraints or cycles of constraints
that do not involve at least one variable it controls.

Constraint privacy: no agent can learn the nature or contents of constraints
in which it is not involved. For example, A cannot find out that B wants y
XOR z. In an optimization setting, A cannot discover what value B attaches
to obtaining y or z, in case it has any preference for one slot or the other.

Definition 3. An algorithm for DisCSP preserves full constraint privacy if
an agent does not learn the cost of any particular tuple in a constraint that
does not involve any variable it controls, except for semi-private information.
It preserves limited constraint privacy if the information that it can learn
about such a tuple is bounded by a threshold € and € can be made arbitrarily
small by suitable choice of protocol parameters.

Decision privacy: no agent can discover the outcome of any decision that
other agents make in the final solution.

Definition 4. An algorithm for DisCSP preserves full decision privacy if
no agent can learn the values of any variable that it does mot control in the
final solution, except for semi-private information.

An algorithm for DisCSP preserves limited decision privacy if no agent can
learn the values of any variable that it does not control and is not part of the
neighbourhood of a variable it controls, except for semi-private information.

In this paper, we show how the DPOP algorithm can be adapted to provide

these four types of privacy guarantees. We achieve agent and topology privacy
through the use of codenames, limited constraint privacy through the use of
obfuscation, and limited decision privacy through the use of codenames.

2 Preliminaries

2.1 Distributed Constraint Satisfaction Problems

Definition 5 (DisCSP). A discrete distributed constraint satisfaction problem
(DisCSP) is a tuple < A, X,D,C >:

— A={ay,...,ar} is a set of agents

— X = {x1,...,zn} is a set of variables. Each variable xz; is controlled by an
agent a(x;)

— D={di,...,dn} is a set of finite variable domains

— C=A{c1,...,cm} is a set of constraints, where each constraint ¢; is a function
of scope (i), -+, i), ¢; + diy X..xd;;, — {0, 1}, assigning 0 to feasible tuples,
and 1 to infeasible ones. Constraints are known to all agents that control a
variable involved in the constraint.



4 Privacy Guarantees through Distributed Constraint Satisfaction

A solution is a complete assignment such that the sum of constraint values
Zciec ¢; = 0, which is the case exactly when it is consistent with all constraints.
We can thus understand these values as a cost. The framework can be extended to
partial satisfaction or general constraint optimization by finding an assignment
that minimizes the cost and letting constraints be general real functions.

In the following, we assume that all agents know the number n of variables in
the problem, that the graph formed by the constraints is connected (otherwise
each sub-problem can be solved independently), and that all agents that control
variables in a given constraint can communicate securely. We also assume that all
constraints are either unary or binary, which is a common assumption in the lit-
erature that can be made without loss of generality. In a slight abuse of language,
we also sometimes indifferently write “variable z;” instead of “agent a(z;).”

Slot Allocation as DisCSP: We model the airport slot allocation example
by two sets of variables x and #. 2 is controlled by the airport offering slot b
and takes value 1 if it allocates slot b to airline a and 0 otherwise. 2% is a
variable controlled by airline @ and constrained to be equal to 2%. Three types

of constraints exist on these variables:

1. Each slot b can only be assigned to at most one airline, so for any pair of
variables % and 2%, the combination of assignments where they are both
assigned 1 is infeasible.

2. Each airline has private constraints on the feasible combinations of slot as-
signments. For example, since airline A is interested in getting at least one
of the slots, then ¢4 (2% = 0,2% = 0) =1 and ¢4 = 0 in all other cases.

3. Corresponding = and & must have equal values.

Constraints of type 1 and 2 must be kept private to the corresponding airports
and airlines, for they would otherwise reveal important competitive information
to competing airlines. As shown in the constraint graph of Figure 1, these can
in fact be seen as constraints internal to the agents that define them. The only
inter-agent constraints are the constraints of type 3, which should also be kept
private to the airport and airline that control the corresponding variables.

2.2 Depth-First Search (DFS) Trees

DPOP works on a Depth-First Search (DFS) traversal of the constraint graph.
It constructs a spanning pseudotree consisting of the constraints used to dis-
cover the nodes and linking parents to children by edges called tree edges. All
other constraints become back edges that link pseudoparents to pseudochildren.
Because of the DFS tree construction, all pseudoparents are also ancestors in
the spanning tree.

The separator Sep; of x; is the set of ancestors of x; whose removal discon-
nects the subtree rooted at x; from the rest of the tree. A node’s separator can
be determined recursively: for a leaf, it is the union of its parent and all pseu-
doparents; and for a non-leaf node, the union of its parent, pseudoparents, and
its children’s separators, minus itself.



Privacy Guarantees through Distributed Constraint Satisfaction

Fig. 1. Constraint graph corresponding to the example in which A wants y OR z,

B wants y XOR z, and C' wants either both y and z or none.

Fig. 2. One possible DFS tree for the example.



6 Privacy Guarantees through Distributed Constraint Satisfaction

2.3 DPOP: Dynamic Programming Optimization

DPOP was introduced in [6]. DPOP is an instance of the general bucket elim-
ination scheme from [16], which is adapted for the distributed case. DPOP has
three phases:

Phase 1 — DFS Tree Generation: A DFS tree is obtained from the con-
straint graph (as in Figure 2) by first running a decentralized leader election
algorithm in order to decide upon the root of the pseudotree. Once the root has
been identified, it initiates a decentralized DFS traversal of the graph. There
are distributed DFS algorithms (for example [6]) that do this by token-passing
with a linear number of messages. As a result, each node consistently labels
its neighbors as parent/child or pseudoparent/pseudochild. The DFS tree serves
as a communication structure for the other two phases of the algorithm: UTIL
messages (Phase 2) travel bottom-up, and VALUE messages (Phase 3) travel
top-down, only via tree-edges. Sibling nodes do not exchange any messages.

Phase 2 — UTIL Propagation: The agents (starting from the leaves) send
UTIL messages to their parents. The subtree of a node X; can influence the rest
of the problem only through X;’s separator, Sep;. Therefore, a UTIL message
contains the optimal cost obtained in the subtree for each instantiation of Sep;.

Phase 3 — VALUEF Propagation: This is a top-down propagation initiated
by the root, when Phase 2 has finished. Each node determines its optimal value
based on computation from Phase 2 and the VALUFE message it receives from
its parent. Then, it sends this value to its children through VAL UE messages.

It has been proven in [6] that DPOP produces a linear number of messages.
Its complexity lies in the size of the UTIL messages: the largest one is space-
exponential in the induced width of the DFS ordering used.

2.4 Privacy Loss in DPOP

In DPOP, privacy is lost along all four dimensions listed in the introduction
as a result of executing each of DPOP’s three phases. Specifically, in the DFS
construction phase, agents learn the identity of all their ancestors (even the ones
with whom they are not connected), and the existence and identity of back-edges
in the DFS. In the example from Figure 2, agent A learns about agent B as its
ancestor, and agent z learns about the existence of agent y, and that agent C
has a constraint with agent y.

Second, in the UTIL propagation phase, all the costs passed in the messages
are in clear text, and thus transparent to every agent. Some information is semi-
private, for example an agent learns what values are feasible for its own variables
under different circumstances. However, the algorithm also leaks consistency
information about the variables controlled by other agents: for example, agent z
could learn that certain assignments of 2% and z¥, are not feasible for A and C.



Privacy Guarantees through Distributed Constraint Satisfaction 7

Algorithm 1: P-DPOP: DPOP with privacy guarantees.
P-DPOP(A, X, D,C):

Initialization:

1 For each binary constraint c(z,y) € C, agent a(x) generates a vector of random
obfuscating keys O(z) that it sends to agent a(y), which does likewise

2 For each variable z; € X, agent a(z;) generates a codename C(z;), and
codenames C(v1),...,C(vx) for ;s domain values, and sends them to all
agents owning a variable linked to x; by a constraint

Anonymous DFS construction:

3 Choose root of DFS tree using Algorithm 2
4 Construct DFS labelling using Algorithm 3

UTIL propagation protocol:

5 Wait for UTIL messages from all children

6 Partially deobfuscate received UTIL messages using known keys and codenames

7 As in DPOP, join resulting messages with own unary constraints and binary
constraints involving (pseudo-)parents’ variables; project x; out

8 Obfuscate result and send to parent

VALUE propagation:

9 Wait for VALUFE message from parent; deobfuscate it
10 Compute optimal value v] for x;
11 Send VALUE messages to all children using the codenames C(z;) and C(v;)

Third, in the VALUFE propagation phase, assignments of variables circulate
unencrypted. For example, agent z receives the final assignments for variables
2% and zf, in clear text, as this is required for z to make its own final decision.

3 P-DPOP: Privacy Guarantees for DPOP

This section introduces P-DPOP, an algorithm for DisCSP that provides privacy
guarantees. P-DPOP is an extension to DPOP, and we show in the following
the modifications from DPOP, and how they provide privacy guarantees. The
P-DPOP algorithm is described in Algorithm 1.

3.1 Agent and Topology Privacy in DFS Construction

The DFS tree is created in a distributed fashion following a message exchange
protocol in which agents only communicate with their neighbors in the constraint
graph. It consists of two phases: first, the variable at the root of the tree must be
chosen; second, each variable must identify the nature of its relationships with
its neighbors. Both phases guarantee strong agent privacy and topology privacy.



8 Privacy Guarantees through Distributed Constraint Satisfaction

Algorithm 2: Anonymous leader election to choose the root of the tree

elect_leader(.A): each agent a € A does:

1 Generate unique obfuscated identifying number ID
Initialize known maximum ID to maz < rand(0...ID)
nb_lies =— rand(n...2n)
for nb_lies times do

Send max to all neighbors

Get maxi ... maxy from all neighbors

mazx_tmp «— max(mazx, maxi, ..., Mark)

mazx «— rand(maz_tmp ... max(ID, maz_tmp))

w N

L =R BN

8 mazx < max(maz, ID)
for (3n — nb_lies) times do

9 Send mazx to all neighbors
10 Get maxi ... maxy from all neighbors
11 max «— max(maxr, maxi, ..., Maxx)

if max = ID then
12 Choose any of the agent’s variables =, and mark it as the root of the DFS
tree

Anonymous leader election (Algorithm 2): We assume that each agent has
a unique identifier, for example its MAC address. It anonymizes this number,
for instance by taking it as exponent in a finite field exponentiation, to generate
a unique obfuscated identifying number ID. The protocol then consists, for each
agent, in sending its ID number to its neighbors, updating it to the maximum
of its ID and its neighbors’, and then repeating these two steps such that the
knowledge of the maximum ID propagates progressively to all agents. In the end,
only one agent has its initial ID number equal to the computed maximum; this
agent is the leader, and picks one of its variables z, to be the root of the tree.
This protocol converges in n steps, where n is the maximum distance of any two
nodes in the graph, for which the number of nodes in the problem is an upper
bound.

A shortcoming of this protocol is that the neighbours of the root agent receive
the maximum ID in the first cycle, and can thus tell who the root is. This is
avoided by first letting the agents give a random lower number and substituting
the true ID at an unknown randomly chosen time. In this way, the protocol does
not leak any information about the topology of the constraint graph.

Distributed DFS traversal (Algorithm 3): Once the root variable z, has
been marked, the actual DFS construction protocol can be started. In this al-
gorithm, each variable maintains a list of neighbor variables in the constraint
graph, defined as those variables that it shares a constraint with. It assigns one
of the following labels to each neighbor: open, parent, child, pseudo-parent and



Privacy Guarantees through Distributed Constraint Satisfaction 9

Algorithm 3: Distributed DFS traversal to generate the DFS tree

DFS_traversal: for each variable z € X, a(x) does:

1 Mark all neighbours as open
if x is marked as the root variable x, then
2 ‘ Mark next open neighbor as child and send it a CHILD token

while true do

3 Wait for incoming token
if received very first CHILD token and x is not x, then
4 | Mark sender as parent

else if received CHILD token from open neighbor then
5 ‘ Mark sender as pseudo-child and reply with a PSEUDO token

else if received PSEUDO token then
6 ‘ Mark sender as pseudo-parent

if has open neighbor then

7 ‘ Mark next open neighbor as child and send it a CHILD token
else
8 ‘ Send CHILD token to parent (if = is not x,) and terminate

pseudo-child. Initially, all neighbors are open. The root variable starts by sending
a CHILD token that will traverse the constraint graph in DFS order. When a
non-root variable receives its very first CHILD token, it marks the sender as its
parent, and forwards the token to its next open neighbor, which it marks as a
child. When the variable runs out of open neighbors, it resends the CHILD to-
ken to its parent, hereby telling it that its whole subtree has been explored, and
can proceed with the next phase of the P-DPOP algorithm. When a variable
receives the CHILD token from the variable it previously sent it to, it knows
it can forward it to its next open neighbor, which it marks as another child.
However, if it receives the CHILD token from a different, still open neighbor, it
can infer there is a cycle in the constraint graph. It then marks the sender as
a pseudo-child, and replies with a special PSEUDO token to notify it of their
pseudo-child /pseudo-parent relationship.

3.2 Limited Constraint Privacy in UTIL Phase via Obfuscation

Observe first that if the constraint graph is a tree, then agents only learn about
their direct neighbors and so both agent and constraint privacy are guaranteed
also during UTIL and VALUEFE propagation phases.



10 Privacy Guarantees through Distributed Constraint Satisfaction

However, privacy problems can arise from the presence of a back edge. A
tree edge in the DF'S tree could be called upon to transmit a multidimensional
message that refers to another agent elsewhere in the tree (namely, the root of the
back edge). For instance, in DPOP, agent A would send the message UTIL 4,
in Table 1 to agent z, containing references to the airport offering slot y, whose
identity A might want to hide from z, and also and more importantly from
possible competing airlines that could be asked to relay this information to y
(such as airline B).

Table 1. Cleartext message UTILa_,, Table 2. Obfuscated message UTILA—..

in DPOP. in P-DPOP.
% =0z =1 I'=all'=0
5 =0 1 0 775 = 0] 12346 | 23456
5 =1 0 0 x5 = 1|12345 (23456

We identify the corresponding variable’s name as well as its different values
by codenames that are only known to the agents at both ends of the back edge.
In this way, agents in between do not know what variable the message refers
to, nor the possible values for this variable. The codenames are be generated
by the root of the back edge and communicated through a secure channel to
its pseudochild at the other end of the back edge. In this example, the airport
offering slot y decides to represent 2% = 0 by I' = «, and 2%y = 1 by I' = 3, and
sends these codenames to airline A.

The use of codenames still leaves open the possibility that an agent rec-
ognizes the meaning of a message through the values it carries. For example,
in a resource allocation problem, an inconsistency usually arises from the non-
allocation of a resource. Furthermore, the pattern of consistencies itself can be
valuable information that should be protected.

Our solution is to obfuscate constraints by adding large random numbers to
their values. If the same number is added uniformly to all values that need to be
compared, the results of the comparisons will be unaffected by this obfuscation.
This makes it possible to carry out the essential dynamic programming opera-
tions on obfuscated numbers while revealing only certain kinds of information.

For instance, when receiving the message UTIL 4_.,, the airport offering
slot z could infer that there is an OR constraint between its variable 2% and some
other variable (represented by the codename I'). This is a piece of information
that airline A might not want to reveal. To obfuscate it, the airport offering
slot y sends through a secure channel a vector of secret, large random numbers
O(zY%) = (12345,23456) to airline A, which is going to add them to all costs in
its message corresponding to ¥ = 0 and z% = 1, respectively. The resulting
obfuscated UTIL message is presented in Table 2.

When receiving the obfuscated message UTIL 4_,., the airport is no longer
able to compare the two columns, because they have been added two different,
unknown numbers. However, it is still able to compare the rows, which is neces-



Privacy Guarantees through Distributed Constraint Satisfaction 11

sary to carry out its local operations on the received cost values. In particular, it
can compute the join of the obfuscated message UTIL 4., from airline A with
the other obfuscated message UTILc_,, (Table 3) received from airline C, with-
out de-obfuscating them. The result of this operation is presented in Table 4,
and is a doubly-obfuscated message with respect to variables 2% and z.

Table 3. Obfuscated UTIL message Table 4. Join of the two UTIL messages
UTILc—. . obtained by using the co- UTILA—., and UTILc,..
denames A for variable z%, v for 0

and 6 for 1, and the vector of random A=xy A=9
numbers O(zY,) = (34567, 56789). I'=al'=pI'=al'=0
= _ 0 x5 = 0[46913 5802369136 | 80246
A=~A=9¢ Tc = x5 = 146912 5802369135 | 80246
x& = 0]34567 (56790 wi =1 x5 = 0[46914 58024 | 69135 | 80245
xg = 1]34568 56789 c x5 = 146913 58024 69134 | 80245

The airport offering slot z then joins this matrix with its constraint z% +z% +
zg < 1 (which consists in adding 1 to cost values corresponding to z% + z% +
xg > 1), and then projects out variables % and x%. This projection is done by
comparing cost values row-wise, which is feasible without de-obfuscation since
the rows have been added the same vector of numbers. The result is presented
in Table 5, and corresponds to the message that is sent to airline B.

Table 5. Utility message UTIL._.B. Table 6. UTIL message UTILp_.,.
A=~ A=6 A= A=90
I'=aoll'=06'=all' =0 I'=ao|ll'=p|'=a|ll'=7
T = 014691258023 | 69135 |80245 x¥% = 046913 58023 |69135 | 80246
Th = 1/46913|58023|69135 (80246 x% = 146912 58023 |69135 | 80245

Upon receipt of this message, airline B is able to infer that the minimum
cost achievable by its subtree depends not only on its decisions (i.e. the value
assigned to variable £%), but also on two other variables represented by the
codenames I' and A. However, it does not know what these codenames refer
to. Furthermore, for a given value of £%, it does not know how the minimum
achievable cost depends on I" and A, since it cannot compare columns without
knowing the secret numbers that were used to obfuscate them.

As described previously, the airline can still carry out its local computations
without de-obfuscating the cost values. In particular, it first joins the received
UTIL message with its XOR constraint, which corresponds to adding 1 to cost
values corresponding to Z% = 2%. Projecting out variable #% then yields the
message UTILp_,, (Table 6) that is sent to the airport offering slot y. Again,
this projection can be carried out without de-obfuscation, since all costs on the



12 Privacy Guarantees through Distributed Constraint Satisfaction

same column have been added the same random number, and the projection is
done by comparing costs row-wise.

The airport is then able to de-obfuscate the message simply by subtracting
the vector of secret random numbers O(z%) = (12345, 23456) from the columns
corresponding to (I' = a,I" = f3), and O(zy,) = (34567,56789) from (A =
~v,A = §). Finally decoding the codenames yields the cost matrix in Table 7.
Joining this with the constraint 2% + 2% + 2, <1 (i.e. adding 1 to all costs that
violate this constraint) yields the final cost matrix in Table 8.

Table 7. De-obfuscated UTIL message Table 8. Join of UTILp_., with the

UTILp_.,. constraint =% + =% + «¥% < 1.
zt =0 zd =1 zl, =0 zl =1
z% =0Jz% = 1|z% =0|z% =1 zY =0z =1|z% =0|z% =1
2L =0 1 0 1 1 2% =0 1 0 1 2
zh =1 0 0 1 0 =1 0 1 2 1

Based on this cost matrix, the airport can choose either one of the two
feasible decisions (with a cost of 0), which are to assign its slot y to A or to B,
respectively.

3.3 Limited Decision Privacy through the Use of Codenames

During the VALUE propagation phase, decisions are made and sent down the
tree. In order to provide the same level of privacy as during the UTIL propagation
phase, variables and values are referred to by their codenames. For instance, if
z%, = 0 is chosen as the optimal decision, then the airport offering slot y sends
the message

VALUE, .p={2% =0, =3,A =~}

to airline B, which is then not able to learn that slot y was assigned to the
competing airline A.

In most applications, agents will learn the values chosen for variables they
have constraints with anyway, so limited decision privacy is sufficient. For in-
stance, in our example, airline B would eventually be able to infer the value of
variable % from the value of its variable #% anyway, since they are constrained
to be equal. However, we recognize that there may be applications that require
full decision privacy.

3.4 Privacy properties
Proposition 1. Algorithms 1,2 and 3 preserve agent privacy.

Proof. All variables are identified by codenames. Codenames of variables are only
communicated between agents that control variables in the same constraint, and
agents have no other way of learning codenames.



Privacy Guarantees through Distributed Constraint Satisfaction 13

Proposition 2. Algorithms 1,2 and 3 preserve topology privacy.

Proof. Variables are identified by codenames. Thus, both in the leader election
and in the DF'S tree generation, an agent does not learn anything other than the
codename about agents that it is does not share a constraint with.

Further information can be inferred from the constructed DFS tree. Here, the
presence of a backedge shows the existence of a cycle in the constraint graph.
Note that, if the backedge occurs in the propagation from variable x;, it indicates
a cycle that involves this variable z;. Thus, it does not leak information about
any topological element that x; is not involved in, and so topology privacy is
preserved.

Proposition 3. Algorithm 1 preserves limited constraint privacy.

Proof. Information about constraints is transmitted during the UTIL propaga-
tion phase. Privacy could be violated in two ways: by inference from the ob-
fuscated value to a value itself, and by inference from combinations of values
obfuscated with the same key. We first prove the protection of the obfuscation.
Let X € [0,2!] identify the cost of a particular tuple (in this case, it is the
number of conflicts entailed by that tuple). An eavesdropping agent A that con-
trols k variables observes this cost in at most k obfuscated versions Y = Y7, .., Yy,
each time obfuscated with a different and statistically indepedent Z; € [0,2™]
that arises through the fact that certain costs may be known to be the same and
observed several times. Then the information that Y7, .., Y} gives about X is:

I(V:X)=I(X;Y)= H(Y) - HY|X)
k k
=H(Y) - Y HYi|X)=H(Y)~) H(Z)
i=1 i=1
Now Y; € [X, X +2™] and H(Y;) < log(X +2™), and also H(Y) < k-log(X +2™)
because of independence. So we have that

I(Y;X) < k- (log(X +2™) — log(2™))
< k- (log((2" +2™)/2™) = k - log(1 + 2(—™)

Thus, the bound on the information that the obfuscated observations give
about the cost can be made arbitrarily small by increasing m, and we can reach
any desired level of privacy.

Further information can be inferred from the fact that the same random
number Y; must be used to obfuscate an entire column of the UTIL message.
In particular, the agent that owns a variable z; can tell the differences in cost
of different values for this variable. To use this information for inference about
particular tuples would require background information about at least one of
the values, for example knowing the minimum or maximum cost value. However,
this information is not available to the agent; even the distribution of cost values
cannot be used to make inferences about minima or maxima as it is self-similar
and so does not reveal anything about the absolute values.



14 Privacy Guarantees through Distributed Constraint Satisfaction

The exception is that in the VALUE propagation phase, the agent finds out
that a certain combination of value assignments for other variables leads to a
consistent solution, thus allowing it to infer that the minimum value in the
corresponding column is zero. Consequently, it can tell the number of conflicts
for all these values. Note that the set of values for which there is no conflict is
semi-private information, as each of them corresponds to a consistent solution of
the CSP and would thus be leaked by that solution. In certain cases, for example
for functional constraints, knowing that a certain value has k conflicts can be
used to infer that a value of another connected variable has k or k — 1 conflicts.
However, because of topology privacy, the agent does not know what constraints
these conflicts result from, and thus cannot infer anything about their tuples.
Hence, the only information that can be gained is semi-private information.

Proposition 4. Algorithm 1 preserves limited decision privacy.

Proof. During VALUE propagation, agents learn decisions for variables that they
either share a constraint with or that are part of a backedge that is part of the
separator they control. When they share a constraint with the variable, limited
decision privacy is not violated. Variables involved in backedges are identified
by codenames, as are the values that they take. Unless they share a constraint,
the agent does not know the meaning of any codename, and thus cannot infer
either the variable nor the value that it has taken.

Because of constraint privacy, the decision on one variable does not allow to
infer the decision on another variable. Thus, limited decision privacy is preserved.

4 Conclusions

Distributed constraint satisfaction and optimization has been studied for many
years, and privacy has often been cited as a primary reason for using distributed
algorithms. In this paper, we show how an existing algorithm for distributed
constraint satisfaction, DPOP [6], can be adapted to give the required privacy
guarantees with no increase in algorithmic complexity. Like DPOP, it can thus
solve problems of realistic size.

We note that the methods described here work equally well for partial con-
straint satisfaction or even general optimization when the scope of constraint
valuations is extended from {0, 1} to the real numbers. However, such settings
pose additional issues of self-interest as agents will have an interest to drive solu-
tions towards those that satisfy their interest best. These can be addressed with
economic mechanisms but are beyond the scope of this paper.

The methods described here can be also be applied in the context of other
distributed constraint satisfaction algorithms. For example, obfuscation and co-
denames could be used with search. However, as pointed out in [14], such algo-
rithms leak information through the runtime of the solving process itself, so the
value of privacy guarantees is not as clear.



Privacy Guarantees through Distributed Constraint Satisfaction 15

References

10.

11.

12.

13.

14.

15.

16.

International Air Transport Association (IATA): Worldwide Scheduling Guide-
lines. 12th edn. (December 2005)

Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3(2) (2000) 185-207
Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous search with aggrega-
tions. In: AAAI/TAAI Austin, Texas (2000) 917-922

Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. AI Journal 161 (2005)
149-180

Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. Proceedings of Third International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS 2004) 1 (2004) 438-445
Petcu, A., Faltings, B.: DPOP: A scalable method for multiagent constraint opti-
mization. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence, IJCAI-05, Edinburgh, Scotland (Aug 2005) 266—271

Franzin, M.S., Freuder, E.C., Rossi, F., Wallace, R.: Multi-agent constraint systems
with preferences: Efficiency, solution quality, and privacy loss. Computational
Intelligence 20(2) (May 2004) 264—286

Maheswaran, R.T., Pearce, J.P., Bowring, E., Varakantham, P., Tambe, M.: Pri-
vacy loss in distributed constraint reasoning: A quantitative framework for analysis
and its applications. Autonomous Agents and Multi-Agent Systems (JAAMAS)
13(1) (July 2006) 27-60

Greenstadt, R., Pearce, J.P., Tambe, M.: Analysis of privacy loss in distributed
constraint optimization. In: Proceedings of the T'wenty-First National Conference
on Artificial Intelligence (AAAT’06), Boston, Massachusetts, U.S.A.; AAAI Press
(July 16-20 2006) 647-653

Brito, I., Meseguer, P.: Distributed forward checking. In: Proceedings of the Nineth
International Conference on Principles and Practices of Constraint Programming
(CP’03). Volume 2833., Kinsale, Ireland, Springer Berlin / Heidelberg (Septem-
ber 29-October 3 2003) 801-806

Brito, I., Meseguer, P.: Distributed forward checking may lie for privacy. In:
Proceedings of the Nineth International Workshop on Distributed Constraint Rea-
soning (CP-DCR’07), Providence, RI, USA (September 23 2007)

Greenstadt, R., Grosz, B., Smith, M.D.: SSDPOP: Using secret sharing to improve
the privacy of DCOP. In: Proceedings of the Nineth International Workshop on
Distributed Constraint Reasoning (CP-DCR’07), Providence, RI, USA (Septem-
ber 23 2007)

Suzuki, K., Yokoo, M.: Secure generalized vickrey auction using homomorphic
encryption. Financial Cryptography 2742 (2003) 239-249

Silaghi, M.C., Mitra, D.: Distributed constraint satisfaction and optimization
with privacy enforcement. In: Proceedings of the 2004 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT’04), Washington, DC,
USA, IEEE Computer Society (2004) 531-535

Silaghi, M.C., Faltings, B., Petcu, A.: Secure combinatorial optimization simulating
DF'S tree-based variable elimination. In: 9th Symposium on Artificial Intelligence
and Mathematics, Ft. Lauderdale, Florida, USA (Jan 2006)

Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)



