Coordinating Agile Systems through the
Model-based Execution of Temporal Plans
by
Thomas Léauté

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2005

(©Massachusetts Institute of Technology 2005. All rights reserved.
First Copy

Author ...
Department of Aeronautics and Astronautics
July 25, 2005

Certified Dy
Brian C. Williams

Associate Professor

Thesis Supervisor

Accepted Dy ...
Jaime Peraire

Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

Coordinating Agile Systems through the
Model-based Execution of Temporal Plans
by

Thomas Léauté

Submitted to the Department of Aeronautics and Astronautics
on July 25, 2005, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

Agile autonomous systems are emerging, such as unmanned aerial vehicles (UAVs),
that must robustly perform tightly coordinated time-critical missions; for example,
military surveillance or search-and-rescue scenarios. In the space domain, execution
of temporally flexible plans has provided an enabler for achieving the desired coordi-
nation and robustness, in the context of space probes and planetary rovers, modeled
as discrete systems. We address the challenge of extending plan execution to systems
with continuous dynamics, such as air vehicles and robot manipulators, and that are
controlled indirectly through the setting of continuous state variables.

Systems with continuous dynamics are more challenging than discrete systems,
because they require continuous, low-level control, and cannot be controlled by issuing
simple sequences of discrete commands. Hence, manually controlling these systems
(or plants) at a low level can become very costly, in terms of the number of human
operators necessary to operate the plant. For example, in the case of a fleet of UAVs
performing a search-and-rescue scenario, the traditional approach to controlling the
UAVs involves providing series of close waypoints for each aircraft, which incurs a
high workload for the human operators, when the fleet consists of a large number of
vehicles.

Our solution is a novel, model-based executive, called Sulu, that takes as input
a qualitative state plan, specifying the desired evolution of the state of the system.
This approach elevates the interaction between the human operator and the plant,
to a more abstract level where the operator is able to “coach” the plant by qualita-
tively specifying the tasks, or activities, the plant must perform. These activities are
described in a qualitative manner, because they specify regions in the plant’s state
space in which the plant must be at a certain point in time. Time constraints are also
described qualitatively, in the form of flexible temporal constraints between activities
in the state plan. The design of low-level control inputs in order to meet this abstract
goal specification is then delegated to the autonomous controller, hence decreasing
the workload per human operator. This approach also provides robustness to the
executive, by giving it room to adapt to disturbances and unforeseen events, while

satisfying the qualitative constraints on the plant state, specified in the qualitative
state plan.

Sulu reasons on a model of the plant in order to dynamically generate near-optimal
control sequences to fulfill the qualitative state plan. To achieve optimality and safety,
Sulu plans into the future, framing the problem as a disjunctive linear programming
problem. To achieve robustness to disturbances and maintain tractability, planning
is folded within a receding horizon, continuous planning and execution framework.
The key to performance is a problem reduction method based on constraint pruning.
We benchmark performance using multi-UAV firefighting scenarios on a real-time,
hardware-in-the-loop testbed.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor

Acknowledgments

I would first like to thank the people who actively helped me accomplish the work
described in this thesis, and whose support was particularly helpful in the final writing
phase: Hui, Tsoline, Andreas, Jake, and, above all, Brian, whose help and insight have

been critical and inspiring, throug the months I spent working in the MERS group.

Other important contributors and lab mates are, in increasing lexicographic order:
Bobby, Dimitri, Greg, John (a.k.a. Stedl), Lars, Marcia, Margaret (a.k.a. Peggy),
Martin, Ollie, Paul E. and Paul R.; followed by the ones whose names start with an S:
Seung, Shen, Steve and Stano. I also wanted to mention the people whose company

I wish I had had more time to appreciate: Brad, I-hsiang, Jon, and Larry.

Apart from the research carried out in the MERS group, the work accomplished
by the following people has also been very inspiring: Eric Féron, whose outstanding
enthusiasm deserves recognition, Jon How, Yoshi Kuwata, Tom Schouwenaars, Arthur

Richards, and John Bellingham.

I would like to thank my family: my parents and brothers, for helping me find
my way, and helping me achieve what I have achieved so far; my grandparents and
godparents for their support, with a special mention to Mamie Nanie. I would also like
to mention some of the teachers who inspired and helped me discover my passion for
sciences: M. Gilouppe, M. Douillet, Jean-Louis Clément, M. Deschamps, M. Capéran,
Etienne Klein, as well as Christophe Barroy and Mr Waston.

Finally, I would like to thank the Rotary Foundation, and my extended Rotary
Family (hoping that I am not forgetting anyone): Karen Swaim Babin, Jim and
Susana Brown, Jean-Pierre Charlot, Nick and Rosemary Czifrik, Donna D’Agostino,
Euiheon, Susan Frick, Thorsteinn Gislason, Hélene and Bernard Gourdeau, Klaus
and Glenys Hachfeld, Keith Harris, Gene Hastings, Huria, Hans Ikier, Julia, Wilson
Lee, Ranna Parekh, Phillippa, René, Jamie Santo, Sarah, and Stefano.

This research was supported in part by The Boeing Company under contract
MIT-BA-GTA-1, and by the Air Force Research Lab award under contract F33615-
01-C-1850.

Science sans conscience
n’est que ruine de [’ame.
Frangois Rabelais (1494-1553)

Contents

1 Introduction

1.1 Motivation

1.2 Challenges and Required Capabilities

1.3 Approach and Innovations

1.4 Example

1.5 Outline.

2 Related Work

2.1 Temporal Plan Execution

2.1.1
2.1.2

Previous Work in Dispatchable Plan Execution

Comparison with Our Approach

2.2 Qualitative, State-level Control

2.2.1
2.2.2

Model-based Execution

Hybrid Automata and Qualitative Control

2.3 Model Predictive Control

3 Problem Statement
3.1 Multiple-UAV Fire-fighting Example
3.2 Definition of a Plant Model

3.2.1
3.2.2
3.2.3
3.24

Overall Definition of a Plant Model
Definition of a Forbidden Region
Definition of a State FEquation

Application to Hybrid Automata

7

15
15
16
18
20
22

25
26
26
28
30
30
34
36

3.3 Definition of a Qualitative State Plan
3.3.1 Overall Definition of a Qualitative State Plan
3.3.2 Definition of a Schedule
3.3.3 Definition of an Activity
3.3.4 Definition of a Temporal Constraint
3.3.5 Definition of an Objective Function
3.3.6 Comparison with Metric Interval Temporal Logic

3.4 Definition of the HMFEz Problem
3.4.1 Definition of Hybrid Model-based Ezecution
3.4.2 State Estimation 000
3.4.3 Control Sequence Generation
3.4.4 Comparison with Previous Work

3.5 Overall Approach to Solving HMEx
3.5.1 Infinite Horizon HMEx
3.5.2 Receding Horizon HMEx
3.5.3 Comparison with Related Work

Encoding the HMEx Problem as a Disjunctive Linear Program
4.1 Overall DLP Approach and Comparison with Previous Work
4.1.1 Motivationo
4.1.2 Disjunctive Linear Programming Formalism
413 HMExasaDLP
4.1.4 Relation with Previous Work
4.2 Encoding Infinite Horizon HMEx
4.2.1 Plant Model Encodings
4.2.2 Qualitative State Plan Encodings
4.3 Encoding Single-stage Limited Horizon HMEx
4.3.1 Revised Encoding for End in Activities

4.3.2 Guidance Heuristic for End in Activities

5 Constraint Pruning Policies 99

5.1 Overall Constraint Pruning Framework 99
5.2 Plant Model Constraint Pruning 101
5.2.1 Forbidden Region Constraint Pruning 101
5.2.2 State Equation Constraint Pruning 104
5.2.3 State Initialization Constraint Pruning 104

5.3 Qualitative State Plan Constraint Pruning 105
5.3.1 Temporal Constraint Pruning 106
5.3.2 Remain in Constraint Pruning (Alg. 7and 8) 113
5.3.3 End in Constraint Pruning (Alg. 9) 114
5.3.4 Guidance constraint pruning (Alg. 10) 116

6 Implementation and Performance Analysis 119
6.1 Pseudocode for Sulu oo 119
6.1.1 Offline Algorithm (Alg. 11) 119
6.1.2 Online Receding Horizon HMEx Algorithm (Alg. 12) 120

6.2 Step-by-step Algorithm Demonstration 123
6.2.1 Inmitialization o 124
6.2.2 First iteration (to =To=0) 125
6.2.3 Second iteration (tg =To+mn,-At=10) 127

6.3 Implementation on a UAV Testbed 128

6.4 Model-based Executive Performance Analysis on a More Complex Test

Case 130

6.4.1 Description of the Test Case 131

6.4.2 Performance Analysis 133

7 Conclusion and Future Work 137
7.1 Future Work 137
7.1.1 Improvements and Extensions of the HMEx Algorithm 137

7.1.2 Improvements on the Constraint Pruning Framework 141

7.1.3 Integration with an HTN Planner 144

9

7.2 Conclusion 144

A Proof of Equivalence between the Two State Equation Encodings in

Eq. (4.8) and (4.9) 147

10

List of Figures

1-1
1-2

1-3

2-1

2-2

3-1
3-2

3-3
3-4

3-6
3-7

Qualitative state plan in the fire-fighting example.

Map of the environment for the multiple-UAV fire-fighting scenario,

and initial partial trajectories computed by Sulu.

Modified trajectories computed by Sulu in order to adapt to a change

in the environment.

Edge-splitting operation, applied to the edges in the STN graph (a),
in order to construct the associated distance graph (b).

Traditional approach to designing embedded systems (left), versus the
model-based approach (right), which elevates the level of interaction

with the plant. o

Block diagram of the model-based executive Titan.

Map of the terrain for the fire-fighting example.

Any general, non-convex region (A) can be approximated by a finite

union of linearized, convex regions (B and C). This figure was taken

from [34]. . . .
Example of a forbidden region Pg in the UAV fire-fighting scenario. .

Thermostat hybrid automaton. [23]
Qualitative state plan in the fire-fighting example.
Block diagram of a hybrid model-based executive.

Timeline illustrating the single-stage, limited horizon HMEx problem

at time o (Def. 15).o

21

22

28

30
31

40

42
43
48
o1
59

3-8

3-9

4-1

4-2

4-3

4-4

4-5

4-6

4-8
4-9

5-1

5-2
5-3

5-4

5-5

Information flow diagram for the single-stage, limited horizon HMEx

problem at time to (Def. 15). oo

Sulu’s receding horizon hybrid controller.

Rectangular no-fly-zone in the UAV fire-fighting example.

a) Forbidden region corresponding to values of the velocity smaller
than the minimum allowed value; b) Linearized version of the forbidden

TEZION.
Derivation of a start in activity from an end in activity..
Derivation of a go through activity from an end in activity.

Guidance heuristic for an end in activity involving a particular air-

craft o, ...
Example of a guidance heuristic for a fire-fighting UAV.
Guidance heuristic used in [10]. oL
Simple example showing a limitation of the approach used in [10]. . .

Our guidance heuristic correctly guides the plant around the forbidden

TEZION.

Computation of the distance graph: each arc in the qualitative state
plan (a) is split into two arcs in the distance graph (b).
Example of an implied temporal constraint.
Example of a state plan where the pruning policy in Alg. 5 entails
infeasible schedules.o o oo
[lustration of the different cases in Alg. 5 (shaded areas are time peri-
ods outside of the current planning window [to, tn,]) : @) eg has already
been executed (line 1); b) eg is out of reach within the current horizon
(line 4); c) eg has already been executed (line 7); d) eg is out of reach
within the current horizon (line 10).

[lustration of the different cases in Alg. 6: a) e has already been

69
70

83

84
38
38

94
95
96
97

98

106
107

108

executed (line 1); b) e is out of reach within the current horizon (line 4).111

12

5-6 Tlustration of the different cases in Alg. 7: a) The activity is completed

(line 1); b) The activity is being executed (line 4); ¢) The activity will

start beyond ty, (line 7); d) The activity will start within ¢y, (line 10). 112
5-7 Temporal propagation of a change in a unary temporal constraint. . 114
5-8 Illustration of the different cases in Alg. 9: a) eg has already occurred

(line 1); b) er will be scheduled within ¢y, (line 4); c¢) eg will be

scheduled beyond ¢y, (line 7). L 115
5-9 Tllustration of the different cases in Alg. 10: a) ep will be scheduled

within the horizon (line 1); b) eg will be scheduled beyond the horizon

(line 4). 116
6-1 Qualitative state plan in the fire-fighting example. 123
6-2 Map of the terrain for the fire-fighting example. 124
6-3 “Snapshots” of the schedule for the qualitative state plan in Fig. 3-5,

at different steps in the algorithm execution: a) First iteration (o =

To = 0), Step 3 (line 20); b) Second iteration (tg = Ty + ny - At = 10),

Step 3 (line 20); ¢) End of second iteration (to = Ty + 2n; - At = 20,

line 33). The bold dots represent the values of T'(e) for each event e,

and the segments represent the bounds [T, T™%] on T'(e). 125
6-4 Trajectories computed at the first iteration (in bold: up to t,,; in light:

between t,, and ty,) 126
6-5 Trajectories computed at the second iteration (in bold: up to t,,; in

light: between ¢,, and ty,) o 128
6-6 Architecture of the CloudCap testbed. This picture was taken from [15]129
6-7 Map of the environment in the multi-UAV fire-fighting scenario. . . . 131
6-8 Qualitative state plan used for performance analysis. 132
6-9 Performance gain by constraint pruning. 134
6-10 Performance of Sulu. oL 135

13

14

Chapter 1

Introduction

1.1 Motivation

Robust, autonomous coordination of agile dynamic systems has application in a wide
variety of fields. Much work has been done in the past few years on the coordinated
control of autonomous unmanned air vehicles (UAVs) [3], which can be used, for
instance, for surveillance and target identification on a widespread battlefield. Non-
military applications can also be of high interest for these kinds of systems, such as
situation assessment in case of an earthquake or a forest fire, in order to identify,
localize and provide urgent assistance to populations waiting to be rescued. A fleet of
small cooperative agile vehicles, like indoor/outdoor helicopters, or wheeled/legged
ground vehicles, could be very useful to rescuers in the context of an accident where
victims might be isolated in places of difficult or dangerous access, such as a building
in fire.

Cooperative vehicles offer just one of a growing number of examples of agile sys-
tems for which autonomous coordinated control will enable unprecedented levels of
capability or robustness. Agile systems with moving parts, such as robot arms and
manipulators [46], represent another wide domain of application, as well as industrial
robots performing robust coordinated tasks in a factory, or robots on orbit or on
Mars, coordinating the assembly of a telescope or a Martian habitat. Moreover, a

Martian life support system in itself can be considered a system with “agile”, con-

15

tinuous dynamics, for which robust synchronized control is absolutely critical [25].
More generally, this also applies to industrial chemical plants, where the control of

fast chemical processes requires robust coordinated control [67].

1.2 Challenges and Required Capabilities

Autonomous control over dynamic systems, such as the ones previously mentioned,
raises a number of challenges, which need to be addressed by extending the current
state of the art in autonomous control.

The first challenge comes from the fact that most of the aforementioned applica-
tions involve time-critical missions, in which the system under control, that is, the
plant, must be able to operate under tight temporal constraints. For example, in the
case of a team of UAVs cooperating to extinguish forrest fires, given estimates of the
speed of progression of the fire fronts, it might be necessary to visit certain populated
locations before a certain time, in order to look for victims who might get trapped
between two fronts. It might also be necessary to monitor the evolution of the fire by
flying over specific regions at regular time intervals.

This motivates the need for an autonomous controller that is able to provide
some level of temporal coordination, by reasoning about deadlines and temporal con-
straints provided by the human operator, and by controlling the plant within these
coordination constraints.

The second major challenge has to do with the continuous, dynamical nature of
the plant. A fixed-wing aircraft, for instance, is a system with fast, agile, continuous
dynamics, which requires continuous, low-level control. Current normal operations
of such UAVs involves providing series of close waypoints that the aircraft must
closely follow. It is possible for a human operator to provide such a low-level control
over the plant; however, many applications such as forest fire suppression would
require the coordination of several of these UAVs, in order to efficiently accomplish
the mission within the given tight time constraints. As the number of aircraft in the

team increases, low-level control of such fleets of cooperating UAVs quickly becomes

16

very costly in terms of the number of human operators necessary to operate the plant.

An autonomous controller for these systems should, therefore, elevate the level
of interaction with the plant, so as to raise the ratio of the number of aircraft over
the required number of human operators. The operator should be able to provide
task-level, supervisory control of the plant, by specifying tasks that the system must
perform, and that are described in terms of abstract, qualitative states that the plant
must go through, hence delegating low-level control to the autonomous controller.
Examples of such tasks in the fire-fighting scenario are high-level goals that each UAV
must contribute to achieve, such as visiting a set of locations in minimum time. This
elevates the interaction with the plant with regards to traditional control approaches,
where the human operator must control the plant by providing low-level trajectories,

rather than more abstract, qualitative tasks that the aircraft must perform.

Finally, a third important challenge raised by the autonomous control of these
systems is that they often evolve in dangerous, dynamic and unpredictable environ-
ments. Forrest fire suppression is a very relevant example of a dynamic environment
in which, although human operators might have access to models of forrest fires that
enable them to predict the progression of the fire over a certain period of time, and
to plan a strategy accordingly, it is often necessary to revise these strategies in real
time, as the situation is evolving. A new fire front might appear that had not been

anticipated, or the winds might change.

To deal with this third challenge, the autonomous controller must be able to exert
robust, adaptive control over the dynamic system. It must be robust to low-level
disturbances inherent to the dynamics of the plant, such as unpredictable wind con-
ditions that affect the behavior and the responsiveness of the aircraft. This level of
robustness can usually be provided by traditional, classical controllers, which are able
to compensate for low-level disturbances in order to maintain the plant as close as
possible to a given set point, or to make the plant follow series of set points. How-
ever, as mentioned before, an autonomous controller for the types of aforementioned
autonomous systems should take in a more abstract, qualitative goal specification.

It must therefore be able to adapt to higher-level unforeseen events. For instance,

17

the fire might be more widespread than initially estimated, requiring the UAVs to
spend more time taking pictures of the fire in order to provide human operators with
sufficient situation awareness. To this effect, controlling the plant by providing a
qualitative description of the desired abstract plant state evolution delegates more
control authority to the autonomous controller, and leaves it more room to adapt to

high-level disturbances in real time.

1.3 Approach and Innovations

In order to provide those three main required capabilities, we propose a method to
control the plant by specifying an abstract, task-level description of the desired plant
state evolution, in the form of a qualitative state plan. We introduce a capability for
robust, model-based execution of such qualitative state plans, for plants with contin-
uous dynamics.

As we argued in the previous section, for time-critical applications such as multiple-
UAV fire-fighting scenarios, it is particularly important for the autonomous controller
to be able to provide temporal coordination to the plant. Furthermore, in order to
elevate the level of interaction with the plant, the human operator should control the
plant by providing task-level, qualitative descriptions of the abstract states the plant
should go through, ignoring low-level control details. In particular, the operator must
be able to reason in terms of the goals that must be achieved, rather than focus on
the means to achieve these goals.

We provide this capability by writing the input to the autonomous controller in
the form of a qualitative state plan. A qualitative state plan is a description of the
mission the plant must accomplish, in terms of tasks, or activities, that the plant must
perform in order to fulfill the mission. It is qualitative, in that the activities specify
successive qualitative states the plant must go through. The qualitative state plan
pieces these activities together in the form of a temporal plan. This temporal plan
uses time constraints between activities in order to specify precedence constraints,

and constraints on the duration of activities and the time at which they must be

18

performed. The temporal constraints in the plan are also described in a qualitative,
temporally flexible manner; hence, the human operator is able to supervise the system

by providing high-level temporal guidelines that the plant must follow.

In order to map the qualitative state plan to low-level control inputs that lead
the plant through the specified qualitative state evolution, we introduce a hybrid
model-based executive, called Sulu, which reasons from a model of the dynamics of
the plant in order to design those command sequences. The model is hybrid, because
rather than involving only discrete variables, it involves both continuous and discrete
variables. The flexibility in the qualitative state plan provides margins of maneuver
to the model-based executive, allowing it to robustly adapt to disturbances and un-
foreseen events. While a traditional, classical controller would only be able to adapt
to low-level disturbances that move the plant state away from a provided set point
or trajectory, our approach delegates more control authority to the model-based ex-
ecutive, which can adapt to higher levels of disturbances and unexpected events, by

exploiting the flexibility in the qualitative state plan.

In order to adapt to disturbances, Sulu interleaves planning and execution over
short planning windows, and continuously re-plans to take into account the latest
knowledge of the state of the plant and the environment. This is done by framing the
problem as an instance of receding horizon control; we call the resulting executive a

receding horizon, hybrid model-based executive.

Reasoning iteratively over short planning windows also reduces the complexity of
the problem, by allowing Sulu to look into the future only up to a limited planning
horizon, rather than design control sequences for the whole qualitative state plan,
which can soon become intractable when the plan involves a large number of activities.
We also introduce novel pruning policies that Sulu uses to prune parts of the search
space of all possible control sequences, in order to find an optimal control sequence
for the plant in real time.

The resulting model-based executive we present in this thesis builds upon previous
work in model-based programming [66], by applying the model-based paradigm to

plants with continuous dynamics. By framing the problem that we are addressing

19

[0,20]
>CStart in [a; & a, at base]

Remain in [, at fire]
[5,8]

[12,0)

End in [o, at fire]

End in [o, at fire]

[6,90)

Remain in [, at fire]

Figure 1-1: Qualitative state plan in the fire-fighting example.

as a temporal plan scheduling and execution problem, we are able to leverage off
of previous work on execution of temporally flexible plans [7, 13, 49, 60, 61, 65].
This work addressed the problem of plan dispatching and execution, and provided
robustness through the use of a receding horizon framework that interleaves planning
and execution. This framework had previously been developed and applied to the
control of plants with continuous dynamics, in the field of chemical process control
(24, 51, 52, 54]. More recently, receding horizon control was also successfully applied to
the control of multiple aircraft [10, 39, 57], through the use of Mixed Integer Linear
Programming (MILP). Much of our work is inspired by this last field of research,
although we use a Disjunctive Linear Programming (DLP) formalism [9, 34, 42, 43],
rather than MILP. Another important difference is that we enable the human operator
to control the plant by specifying desired qualitative regions in the state space that
the plant should remain in or go through, as it is executing the qualitative state plan.
This qualitative approach builds upon related work in qualitative control [37, 53],
in which the plant dynamics are described in an abstract, qualitative manner, that
enables the operator to reason in terms of abstract states that the plant should be

in, rather than details of low-level control.

1.4 Example

In this section, we shortly present an example of application, in the context of a
multiple-UAV fire-fighting scenario. This example will be presented in more detail in

the next chapters, since we use it throughout this thesis to illustrate this work. In this

20

Base 1

Figure 1-2: Map of the environment for the multiple-UAV fire-fighting scenario, and
initial partial trajectories computed by Sulu.

example, the plant consists of two fixed-wing UAVs, which evolve in an environment
(Fig. 1-2) that has a reported fire. The team of UAVs is assigned to collectively
extinguish the fire, by navigating around forbidden regions (e.g. no-fly-zones) and
by dropping water on the fire. The aircraft must also take pictures after the fire has
been extinguished, in order to assess the damage. A natural language description for

the mission’s qualitative state plan is:

Aircraft a; and ag start at base stations Base 1 and Base 2, respectively.
a1 (a water tanker UAV) must reach the fire region and remain there for
5 to 8 time units, while it drops water over the fire. o (a reconnaissance
UAV) must reach the fire region after ay is done dropping water and must
remain there for 2 to 3 time units, in order to take pictures of the damage.

The overall plan execution must last no longer than 20 time unaits.

This qualitative state plan can be represented by an acyclic, directed graph, illus-
trated in Fig. 1-1. The formalism and conventions used in this graphical representa-
tion will be introduced in Section 3.3.

As presented in Fig. 1-2, Sulu designs trajectories for the two UAVs up to a limited

horizon of 15 time steps (the numbers next to each waypoint in the trajectories are

21

Figure 1-3: Modified trajectories computed by Sulu in order to adapt to a change in
the environment.

the indexes of the corresponding time steps). Aircraft o is scheduled to reach the fire
at time step 8, and to remain in the fire region for 5 time steps, which is consistent
with the temporal constraints in the qualitative state plan.

However, while the aircraft are following these initial trajectories, new information
is gathered about the environment (for instance, by analyzing incoming satellite data),
and the fire turns out to be less spread out than originally foreseen (Fig. 1-3). As
a consequence, the initial trajectory for aircraft a; no longer satisfies the qualitative
state plan, because it would make «; remain over the fire during less than 5 time
steps. Sulu is able to adapt to this unforeseen event by modifying the trajectories for
the UAVs, in order for aircraft a; to remain over the fire region for at least 5 time
steps. The new trajectories are uploaded to the UAVs at time step 10, and lead the

team to completion of the mission.

1.5 Outline

The rest of this thesis is organized as follows. In Chapter 2, we first describe relevant

previous work in the fields of model-based programming, temporal planning, and

22

model-predictive control and qualitative control, and how this work tackled some of
the challenges that we mentioned in this introduction. We then present the problem
statement and a multiple-UAV fire-fighting example, used throughout the thesis to
illustrate our work, and we introduce our general approach to execution of temporal
plans for hybrid systems (Chapter 3). In Chapter 4, we present in more detail the
mathematical formalism we use to encode the qualitative state plan and the plant
model. Chapter 5 introduces novel constraint pruning policies that enable us to
achieve tractability and real-time execution. In Chapter 6, we present the details
of our algorithm, a walkthrough example to illustrate our approach, and empirical
results and a performance analysis. Finally, Chapter 7 concludes this thesis, and

presents possible areas of future work.

23

24

Chapter 2

Related Work

In Section 1.2, we introduced three challenges that arise from autonomous control
of agile, dynamical systems, and we presented three capabilities that an autonomous
controller should deliver, in order to tackle these three challenges. First, the au-
tonomous controller should be able to provide temporal synchronization of the plant,
by generating control sequences that satisfy deadlines and temporal constraints pro-
vided by the human operator. In Section 2.1, we describe related work in temporal
plan execution, which provides this capability, by framing the problem as a temporal
plan execution problem. Second, in order to enable the human operator to deal at
a high level with the continuous dynamics of the plant, the autonomous controller
should elevate the level of interaction with the plant, so as to enable the human con-
troller to specify the desired qualitative behavior of the plant in terms of state, rather
than in terms of low-level control inputs. Previous work in model-based programming
tackled this challenge in the context of discrete systems; we describe this model-based
paradigm in Section 2.2, as well as previous work on hybrid automata and qualitative
control, which relates to the plant models we use in this thesis in order to describe
plants with continuous dynamics. Finally, the autonomous controller should be ro-
bust to disturbances and unforeseen events; in Section 2.3, we refer to previous work
in model predictive control, which provides robustness by interleaving planning and

execution.

25

2.1 Temporal Plan Execution

As argued in Section 1.2, in order to control agile, dynamical systems, such as a fleet
of fire-fighting UAVs performing a time-critical mission, the human operator should
be able to specify deadlines and temporal constraints that the autonomous controller
must satisfy, when designing control sequences for the plant. In Section 1.3, we pre-
sented our overall approach to providing this capability, which consists of formulating
the goal specification for the controller in the form of a temporal plan. In this section,

we show how our approach relates to previous work on temporally flexible plans.

2.1.1 Previous Work in Dispatchable Plan Execution

In order to represent temporally flexible plans, [17] introduced the concept of a Simple
Temporal Network (STN'), which built upon previous work on representing qualitative
and metric temporal constraints [4]. An STN consists of instantaneous events, linked
by simple temporal constraints, in the form of a lower bound and an upper bound on
the allowed time between two events. An STN is represented as an acyclic, directed
graph, in which nodes stand for events, and the temporal constraints are represented
by arcs between events, labeled with the corresponding time bounds. Events usually
stand for timepoints corresponding to the beginning or the end of an activity, spec-
ifying a command that must be sent to the plant, or an action that the plant must
perform. In this thesis, in order to represent temporally flexible plans for systems
with continuous dynamics, we use qualitative state plans (Section 3.3). A qualitative
state plan can be seen as an STN, in which the events stand for start and end events
of activities, where activities specify an abstract, qualitative region of the state space
that the plant should be in, rather than a low-level command that the plant should
execute.

In order to execute a temporally flexible plan, one must generate a schedule for the
plan, that is, an assignment of execution times for every event in the plan. Although
such a schedule could be computed beforehand, in real-life applications, the schedule

is computed on the fly, as the events are being executed. This allows the system to

26

take advantage of the temporal flexibility in the plan, by dynamically generating the
schedule in order to be robust to execution uncertainty, such as an unexpected delay
between the time when the plant is commanded to start an action, and the time when
the action eventually starts. Rather than computing a complete schedule beforehand,
the problem then consists of, given a selected execution time for some early events
in the plan, determining a range of allowed execution times for the later events, such

that the overall schedule is temporally consistent.

The solution introduced in [62] and later applied in [17, 49, 60, 61] is, whenever an
event in the plan gets assigned a fixed execution time, to propagate the consequences
to the other events, in order to compute updated ranges of allowed execution times
for these events. As described in Section 5.3.1, we use the same approach, in order to
compute bounds on the times at which events in the plan can be scheduled. These
bounds are then used both to enforce temporal consistency, as in the aforementioned
previous work, and also to determine whether or not an event may be scheduled
within the current planning window; this information is used by the pruning policies

presented in Section 5.3.

Since this temporal propagation process happens in real time, as events are being
executed, this must be done efficiently. In [17, 49, 60, 61], this is done by pre-compiling
temporal constraints in the plan, in a way that local, one-step inference suffices.
For a given event e that has just been executed, one can then perform temporal
propagation only to the immediate neighboring events in the STN, by going through
the list of incoming and outgoing arcs for e, and operating a one-step propagation
along these arcs. This compilation process consists in making explicit all lower and
upper time bounds, between all pairs of events in the STN; the resulting plan is then
called a dispatchable plan, in which, by definition, single-step temporal propagation
to immediate neighboring events is sufficient.

The dispatchable plan is generated using a distance graph, which is obtained from
the graph corresponding to the STN by applying the edge-splitting operation in Fig. 2-
1 to all the edges in the STN graph. The distances between any pair of events in
the STN are then computed by running an all-pairs shortest path algorithm on the

27

a@ (AT

e —>ey?

Figure 2-1: Edge-splitting operation, applied to the edges in the STN graph (a), in
order to construct the associated distance graph (b).

distance graph; the resulting distances are stored in a new, fully connected distance
graph. As previously mentioned, in this thesis, we use the exact same method in order
to compute bounds on the times at which events may be scheduled (Section 5.3).
One issue that arises when using the method we just described, is that the dis-
patchable plan is fully connected, which can result in high computational loads in
terms of memory usage. This can also lead to high computation times, since the
propagation routine must effectively perform temporal propagation on all the events
in the plan, whenever an event e is executed, since e is connected to every other event.
To prevent this computational blow up, the algorithms in [17, 49, 60, 61] prune
temporal redundancy in the dispatchable plan, by only considering the arcs cor-
responding to tightest temporal bounds. This is preformed by running an edge-
trimming routine on the dispatchable plan, in order to remove the edges that are
dominated, that is, the edges that can be removed while keeping the plan dispatch-
able. The resulting plan is called a minimal dispatchable plan. This technique is
not used in this thesis, but could be applied to our state plan pruning framework

(Section 5.3); this is mentioned as future work in Section 7.1.2.

2.1.2 Comparison with Our Approach

As argued in Section 1.3 and in the previous paragraphs, our approach differs from
traditional work on temporally flexible plans, in that we consider qualitative state
plans, in which activities describe the desired qualitative behavior of the plant, in
terms of abstract regions of the state space in which the plant state must remain,

rather than low-level commands that the plant must execute. This approach is based

28

on a model-based paradigm, which we present in Section 2.2.1.

Another important difference between the work described in this thesis and pre-
vious work on dispatchable plan execution is the following. Approaches to temporal
plan execution based on executing a dispatchable plan usually perform a partial eval-
uation of the schedule at compile time, by computing tight bounds on the time at
which each event in the plan can be scheduled. The executive then commits to an
execution time for each event at run time, just before executing the event. This is
also the approach used in [26] in order to perform temporal plan execution for hybrid

systems; we describe this work in more detail in Section 2.2.1.

In this thesis, we also compute a dispatchable graph in order to have access to
bounds on the times at which events may be scheduled (Section 5.3.1); however,
instead of delaying the choice of an execution time for each event until the event is
about to be executed, our model-based executive commits to a complete schedule
over a limited planning window, and then incrementally shifts the planning window,
updating the schedule in order to respond to disturbances. This second approach is
similar to the continuous planning approach used in [13], which generates plans over
a limited planning window, and repairs the plans on the fly in response to unforeseen

events.

Our choice of a continuous planning approach is motivated by the fact that our
executive must generate control sequences for the plant, which are optimal with re-
spect to some objective function, as defined in Section 3.3.5. A reactive approach
would only work when the objective function is cumulative with time, in which case,
minimizing the objective value at any point in time leads to minimizing the overall
objective. In this thesis, however, we want to be able to specify more complex, non-
time-cumulative objective functions, such as, in the fire-fighting UAV example, the
minimization, over a given time window, of the number of episodes during which the
UAV’s absolute velocity remains greater than some threshold for more than 30 sec-
onds. Such complex objective functions require the executive to be able to plan into

the future, and could not be handled if the executive used a purely reactive approach.

29

Model-based
Embedded Program

Embedded Program Statesv\ A/States

Model-based Executive

Observationsf *Commands Observationsf *Commands

Plant Plant

Figure 2-2: Traditional approach to designing embedded systems (left), versus the
model-based approach (right), which elevates the level of interaction with the plant.

2.2 Qualitative, State-level Control

2.2.1 Model-based Execution

As mentioned in the introduction to this chapter, a second challenge raised by the
autonomous control of agile, dynamical systems is the need for a high-level interaction
between the human operator and the under-actuated plant with hidden state. This
level of interaction should enable the operator to control the plant by specifying a
desired abstract plant state evolution, rather than low-level commands that the plant

must execute.

Model-based Execution of Discrete Systems

Previous work in model-based execution introduced a model-based executive, called
Titan [66], which addresses this problem, by acting as an interface between the human
operator and the plant. This is illustrated in Fig. 2-2. In the traditional approach
to designing embedded systems (Fig. 2-2, left), the engineers or the human operators
must design an embedded program that takes in observations directly from the plant,
and generates low-level commands, in order to control the plant. This task can be
difficult for complex systems, because the embedded program must be designed so

as to infer the state of the plant from a very dense flow of sensor information, and

30

Plant Model Goal State

Model-based Executive

A 4 ¢ A
Mode Plant | Mode
Estimation State [Reconfiguration

1 T Command Sequence

v
Observations Command
Sequence

Figure 2-3: Block diagram of the model-based executive Titan.

design commands accordingly. On the contrary, in a model-based, embedded system
(Fig. 2-2, right), a model-based executive provides low-level control and monitoring
of the plant, by constantly estimating the plant state from the observations. The
executive is also able to generate command sequences in order to achieve a given
goal state. This elevates the interaction with the plant, by allowing the engineers
to design embedded programs that effectively can read directly the values of state
variables that, in reality, may not be directly observable. An embedded program can
also directly “write” to state variables, that is, specify goal states for the plant, even
if the state variables are, in reality, not directly controllable. It accomplishes all this
by reasoning from a model of the plant.

In this thesis, we use the same model-based approach, by introducing Sulu, a
model-based executive that takes in a description of the desired state evolution of the
plant, in the form of a qualitative state plan, and generates low-level control sequences
in order to execute that plan, given estimates of the plant state, inferred from the
observations by reasoning over a model of the plant. In the following paragraphs, we
describe Titan in more detail, and we compare it with Sulu.

Fig. 2-3 illustrates the two main functions of Titan. The Mode Estimation (ME)
function takes in a sequence of observations and commands previously sent to the

plant, and infers an estimate of the current plant state. This estimate is used by the

31

Mode Reconfiguration (MR) function in order to generate a sequence of commands
that lead the plant to the desired goal state. These two functions can be mapped
directly to the two functions in Sulu, state estimation and control sequence gener-
ation, illustrated in Fig. 3-6. As explained in more detail in Section 3.4.4, the two
main differences between Titan and Sulu are that Titan was designed to reason on
models that are purely discrete, and does not allow the human operator to specify
temporal constraints on the plant. On the contrary, Sulu is able to control plants
with continuous dynamics, and designs control sequences that satisfy the temporal
constraints specified by the human operator, in the form of a qualitative state plan.

The plant models that the two model-based executives reason on are also conse-
quently different. In order to map a goal state to a sequence of commands, and a
sequence of observations to an estimate of the state of the plant, Titan reasons over a
plant model that describes, at an intuitive engineering level, the different components
in the plant, how each component works, and how all the components are connected
to each other. The plant model is represented using concurrent, constraint automata,
each automaton describing the laws that rule the transitions between discrete modes,
for a given component. Sulu’s plant model focuses more on describing the continuous
dynamics of the plant, and the forbidden regions in the state space that the plant
must avoid. This is presented formally in Sections 3.2 and 4.2.1. In Section 2.2.2, we
also relate Sulu’s plant model with previous work on hybrid automata and qualitative

control.

Model-based Execution of Systems with Continuous Dynamics

Other related work in model-based programming introduced a model-based execu-
tive, called Kirk, which was designed for the coordination of cooperative mobile sys-
tems [32]. One of the major innovations with respect to Titan is that Kirk reasons on
qualitative temporal constraints, in order to provide temporal synchronization over
the plant. Kirk is comprised of a temporal planner, which generates a temporally
flexible plan by selecting a hierarchy of possible contingencies, together with a plan

compiler and dispatcher, which execute the temporal plan efficiently, while adapting

32

to disturbances.

To select among contingencies, Kirk uses a Hierarchical Temporal Network plan-
ner [33], which takes as an input a high-level description of the desired abstract
activities that the plant must perform, written in RMPL (Reactive Model-based Pro-
gramming Language). Kirk then expands these abstract activities into lower-level
activities, using a database of macros, in order to generate a Temporal Plan Network
(TPN). The TPN builds upon temporally flexible plans, similar to qualitative state
plans; it involves events and flexible temporal constraints between events, as well
as activities that the plant must perform. With respect to temporally flexible plan
representation, a key difference with previous work described in Section 2.1.1 is that
it encodes contingencies through an additional construct, called a choose operator,
which specifies that one sequence of activities, among a set of redundant methods,
must be selected for execution. Kirk must then select one sequence of activities for
each choose operator in the TPN, such that the plan is temporally consistent [27],
that is, such that there exists a schedule that satisfies all the temporal constraints in
the TPN. [64] showed that this could be performed in a distributed fashion, and [63]

introduced methods in order to produce optimal schedules.

In order to execute the resulting temporally flexible plan, Kirk uses a plan compiler
and a dispatcher, in order to respectively compile the plan into a minimal dispatch-
able plan, and execute the dispatchable plan, using a method very similar to the
one presented in Section 2.1.1. Plan compilation and dispatching are performed in-
crementally [58], in order to enable fast replanning, when Kirk needs to switch to a
contingent plan to adapt to unforeseen events. [58] also showed that the dispatchable
plans generated by the plan compiler could be executed on a distributed architecture,
under communication limitations.

[63] modified Kirk’s temporal planning algorithm in order to partially extend it
to continuous plants, while the initial algorithm introduced in [33] could only handle
discrete plants. Rather than reasoning over TPNs, [63] reasons over RoadMap Tempo-
ral Plan Networks (RMTPNs). RMTPNs extend TPNs by adding information about
the desired physical location of the vehicles to the temporally flexible plan. This is

33

similar to the qualitative state plans used in this thesis, which can be seen as an ex-
tension of RMTPNs to more general, hybrid plants, since [63] only dealt with teams
of vehicles, with purely continuous dynamics. The function of the temporal planning
algorithm is then to compute control sequences that lead the vehicles through the
desired locations, as well as a schedule for the plan. The algorithm uses Rapidly
exploring Random Trees (RRTs) [41] that take into account the continuous dynamics
of the vehicles. One limitation of this work is that, due to the randomized nature of
the algorithm, there is no guarantee of optimality of the generated control sequences.
In this thesis, we present a model-based executive that generates control sequences
that are optimal over the considered planning window.

Related work in model-based execution [26] proposed an other approach to ex-
tending TPNs; in order to handle hybrid systems, rather than only discrete systems.
[26] uses the same concept of qualitative state plans as in this thesis. The difference
is that rather than encoding the plant dynamics using piecewise-linear functions, as
described in Section 3.2.3, [26] uses a feedback-linearization technique that transforms
the complex, hybrid plant into a set of much simpler linear systems, which can be
controlled using classical PID controllers. The analogies with this work and our work
are described in more detail in Section 3.5.3. As previously mentioned, [26] uses a
partial evaluation approach similar to the one introduced in Section 2.1.2; this is pos-
sible because the objective function is time-cumulative, and consists of maximizing,
at any point in time, the distance between the plant state and a reference trajectory,

SO as to maximize robustness to disturbances.

2.2.2 Hybrid Automata and Qualitative Control

In this section, we describe how related work on hybrid automata and qualitative
control tackled the problem of encoding systems with continuous dynamics, through
the use of models that involve continuous state variables, which evolve following state
equations that depend on the current discrete mode of the plant, or on the current
qualitative operating region. In this thesis, we use a plant model comparable with

these types of hybrid models, which enables our model-based executive to control

34

systems with continuous dynamics.

Hybrid Automata

Previous work in hybrid systems [5, 23] extended the fully discrete models in [66]
to models that are able to describe systems with continuous dynamics that depend
on the modes of the plant’s components. These models are described using hybrid
automata, which extend the automata used in [66] by specifying that the different
modes of a given component correspond to different differential equations, used to
model the continuous dynamics of the plant. Such models are called hybrid, since
they involve both discrete and continuous variables. We describe in more detail the
concept of a hybrid automaton in Section 3.2.4, and we show that the plant model

we use in this thesis is able to represent such hybrid automata.

Qualitative Reasoning and Control

The modeling of hybrid systems has also been tackled in the domain of qualitative
control [35, 36]. In [35], the continuous dynamics of hybrid systems are described
by dynamic equations that vary, depending on the current operating region. This
is very similar to hybrid automata, whose continuous dynamics depend on discrete
modes; however, while a hybrid automaton can only be in a single mode at a time,
the operating regions in [35] describe regions of the state space over which the plant
follows some qualitative behavior, and the operating regions are allowed to overlap.
For a given point in the state space, a fuzzy set membership function is used in
order to determine in which operating regions the point is located, and the dynamic
equations at that point are computed by doing a weighted average of the dynamic
equations associated with each operating region. In this thesis, we do not use this
approach, since we assume that all operating regions are disjoint. Allowing operating
regions to overlap could be an area of future work.

More recently, [37] introduced a framework in which, over each operating region,
the dynamics of the plant are specified using a qualitative description, which only

describes certain aspects of the system, leaving the remaining degrees of freedom

35

available for optimization at a lower level, according to criteria chosen by the de-
signer. This means that, instead of using traditional differential equations to model
the dynamics of the plant, the plant model uses qualitative differential equations
(QDEs), which are a qualitative abstraction of a set of ODEs. This abstraction is
useful in order to elevate the interaction between the human operator, to a level where
the operator can specify desired qualitative regions of the state space that the plant
should remain in or go through. The QDEs in the model are then used to describe
the allowed transitions between such qualitative operating regions. As argued in [53],
describing the desired plant behavior at an abstract, qualitative level delegates more
control authority to the autonomous controller, enabling it to robustly react to larger
disturbances.

The work described in this thesis is similar in that we also allow the user to specify
the desired behavior of the plant at an abstract, qualitative level, in the form of a
qualitative state plan. Our work, however, uses traditional ODEs to describe the
dynamics of the plant, rather than QDEs. The use of QDEs would imply that there
be a lower level of control, which would reason on a more accurate, quantitative model
of the dynamics of the plant, in order to generate low-level control sequences. Our
model-based executive was designed to provide this low-level control over the plant;
hence, it requires quantitative models of the plant dynamics, rather than qualitative

models, which would not be sufficient to generate low-level control sequences.

2.3 Model Predictive Control

As mentioned in the introduction to this chapter, the third capability that an au-
tonomous controller for agile, dynamical systems must provide, is robustness to dis-
turbances and unforeseen events. In Section 2.2, we argued that a qualitative descrip-
tion of the goal that the plant must achieve can be used in order to delegate more
control authority to the executive, and give it more room to adapt to disturbances
and unforeseen events. In this section, we show how the executive can take advantage

of this authority in order to perform robust control of the plant. We relate our work

36

to previous work in model predictive control (MPC'), which provides a framework for

robust, low-level control of plants with continuous dynamics.

Model predictive control, also called receding horizon control, was first introduced
in the field of Operations Research, in order to perform robust, optimal control of
industrial chemical processes [21, 51, 54]. MPC formulates the problem of generating
optimal control inputs for plants with continuous dynamics, by reasoning over reced-
ing, planning horizons. The controller designs precise, optimal control sequences over
short planning windows, and uses a heuristic to compute an estimate of the cost of
the control sequence beyond the horizon in order to reach a final goal state. This
approach interleaves planning and execution, by reasoning over short planning win-
dows, and replanning regularly, taking into account the latest information about the
environment. This provides robustness to the autonomous controller, while enabling

it to plan into the future in order to design optimal control sequences.

In this thesis, we use a very similar approach, by formulating the problem of gen-
erating optimal control sequences for the plant as a mathematical optimization prob-
lem, which we call receding horizon, Hybrid Model-based Ezecution (receding horizon
HMEz, Section 3.5.2). Our approach consists of iteratively generating partial control

sequences, by reasoning over short, receding planning windows.

Along with the use of MPC, other work in chemical process control [24, 52]
used Linear Programming (LP) and Mixed Integer Linear Programming (MILP)
approaches [11, 19] in order to encode the problem of generating optimal control
sequences. In these approaches, the constraints in the problem, such as plant dy-
namics, or safe domains of operation, were encoded as linear constraints over a set of
decision variables. LP or MILP optimizers would then be used in order to find op-
timal solutions to the problem. However, the domain of applications of MPC/MILP
methods has long been restricted to plants with slow dynamics, due to the lack of
computational power and efficient algorithms to solve MILPs. Typically, plants such
as industrial chemical plants need model-predictive controllers that reason with time
units on the order of minutes, or even hours. Computational power has dramatically

increased since the eighties, and we now also have much more efficient MILP algo-

37

rithms; as a result, MPC/MILP methods recently became popular again, in order
to control systems with much faster dynamics, for which model-predictive controllers
need to run at frequencies on the order of 1Hz and above. In particular, these meth-
ods have been proved successful for the control of spacecraft [55, 56] and unmanned
aerial vehicles (UAVs) [10, 39, 57].

The method presented in this thesis broadly builds upon this last thread of re-
search, by using a linear programming technique to solve the problem of designing
control sequences for plants with continuous dynamics, and reasoning over a reced-
ing horizon, following the MPC framework. However, our work differs in two main
ways. As previously mentioned, we use a qualitative, model-based approach in which
the plant is controlled through the use of qualitative state plans, that describe a
desired abstract, qualitative plant state evolution with time. This approach allows
for much richer goal specifications, providing flexible temporal synchronization of the
plant. Furthermore, we use a Disjunctive Linear Programming formalism, rather
than MILP, since [42] showed that significant improvements in solution time could
be achieved by using conflict-directed algorithms on DLPs, over traditional MILP
algorithms. We describe in more detail the differences between our approach and [39]

throughout Chapter 4.

In this chapter, we showed how previous work had partially provided the three
main capabilities that are necessary in order to perform autonomous control of ag-
ile, dynamical systems: temporal synchronization, high-level control of continuous
dynamics, and robust adaptation to disturbances. We showed how our approach re-
lated to and built upon this previous work. In the next chapter, we more formally
present the problem that we are trying to solve, and the overall receding horizon

approach that we use to solve it.

38

Chapter 3

Problem Statement

Given a dynamic system (a plant), we define the hybrid model-based execution (HMEx)
problem as the problem consisting of designing an optimal control sequence for the
plant. This control sequence must satisfy the plant model and a given qualitative
state plan, which specifies the desired evolution of the plant state over time, while
minimizing some cost function.

In this chapter, we present a formal definition of the HMEx problem. We first
introduce a simple example of a plant, consisting of multiple fire-fighting UAVs (Sec-
tion 3.1), which we use to illustrate the problem. We then formally define a plant
model (Section 3.2) and a qualitative state plan (Section 3.3). In Section 3.4, we de-
fine the HMEx problem, and we present the general definition of a hybrid model-based
executive. Finally, we present our overall approach to solving the HMEx problem, and

we introduce a corresponding hybrid model-based executive, called Sulu (Section 3.5).

3.1 Multiple-UAYV Fire-fighting Example

The multiple-UAV fire-fighting example has a plant that consists of two fixed-wing
UAVs, which evolve in an environment (Fig. 3-1) that has a reported fire. The team
of UAVs is assigned to collectively extinguish the fire, by navigating around forbidden
regions (e.g. no-fly-zones) and by dropping water on the fire. The vehicles must also

take pictures after the fire has been extinguished, in order to assess the damage. A

39

Base 1

Base 2

Figure 3-1: Map of the terrain for the fire-fighting example.

natural language description for the mission’s qualitative state plan repeated from

Chapter 1 is:

Aircraft a; and ag start at base stations Base 1 and Base 2, respectively.
a1 (a water tanker UAV) must reach the fire region and remain there for
5 to 8 time units, while it drops water over the fire. ay (a reconnaissance
UAV) must reach the fire region after ay is done dropping water and must
remain there for 2 to 3 time units, in order to take pictures of the damage.

The overall plan execution must last no longer than 20 time unaits.

Fig. 3-5 presents a graphical representation for this plan; the formalism and con-

ventions used in this graphical representation will be introduced in Section 3.3.

3.2 Definition of a Plant Model

Recall that the overall motivation for a model-based executive, such as the one we
introduce in this chapter, is to be able to autonomously design low-level control
sequences for a plant, in order to satisfy a high-level qualitative description of the
desired plant state evolution with time. In order to map a desired state evolution to
a sequence of control inputs, the model-based executive reasons on a model of the

plant.

40

3.2.1 Overall Definition of a Plant Model

In the HMEx problem, a fundamental property of the type of plant we are considering
is that it involves continuous dynamics, which must be controlled by sending sequences
of continuous control inputs. Hence, the plant model that an executive reasons on
should include a description of these dynamics, in terms of equations modeling the
plant behavior with time, as a function of the control inputs. The model also includes
constraints on the states that the plant can be in, and on the control inputs that are
allowed; these constraints define the safe operating regions of the plant. This is

defined formally in Def. 1.

Definition 1 A plant model M = (s, u, F,SE) consists of a vector s(t) of state
variables, a vector u(t) of input variables, a set F of forbidden regions (Def. 2),
defining unsafe operating conditions, and a set SE of state equations (Def. 3) de-
scribing the plant dynamics. The domain of the vector (s, w) is called the state space

S =R" x R™.

The state vector s(t) is used to describe the state of the plant at time ¢ € R, while
the input vector u(t) stores the values of the control inputs exerted on the plant
during the temporal interval [t,¢ + 1). As introduced in Chapter 1, under-actuated
plants are plants for which n > m, which means that there are fewer control inputs
than state variables. In our multiple-UAV example, s is the vector of 2-D Cartesian
coordinates of the UAV positions and velocities, and u is the acceleration coordinates
(Eq. (3.1)). Note that this plant is an example of an under-actuated plant, since
(n=28)> (m=4).

— o o o (07 a9 (6] a a2
5= <$ 17y 17Uml7vy17x 7y 7U:r JUy > (3 1)
u= (agl,agl,ag@,a;?)

A fundamental difference between this thesis and previous model-based execu-
tives, such as Titan [66], is that the state variables and input variables we use take on
real values. For Titan [66], plants are modeled by concurrent constraint automata,

each automaton corresponding to a state variable that only takes on a finite number

41

Figure 3-2: Any general, non-convex region (A) can be approximated by a finite union
of linearized, convex regions (B and C). This figure was taken from [3/].

of discrete values, corresponding to the discrete states (or modes) that the automaton
can be in. In such a model, transitions between modes are instantaneous, and gov-
erned by guards involving state variables and control variables, which also only take
on a finite number of discrete values. This type of fully-discrete model is not suited to
describe systems with continuous dynamics, in which there are no such instantaneous
transitions between discrete states, but rather a continuum of transitions between
continuous states, where the transitions are governed by continuous input variables.

Fully-discrete models and fully-continuous models are two ends of a spectrum.
Between these two ends are hybrid models, used to represent plants whose state is
described by a combination of discrete and continuous variables. Although we define
our model using only continuous state variables, the formalism we use is not restricted
to fully-continuous plants; in Section 3.2.4 we describe how it can be used to model

hybrid systems expressed in terms of hybrid automata.

3.2.2 Definition of a Forbidden Region

Recall (Section 3.2.1) that the models we use to describe the plant involve forbidden
regions, describing disallowed operating regions in the plant state space S. In this

section, we formally define the concept of a forbidden region (Def. 2).

42

/\ —t

y ==
W N E N
<xR’yR> <'xR’yR>
WS E _S
<'xR’yR> <xR’yR>
X/

Figure 3-3: Example of a forbidden region Pg in the UAV fire-fighting scenario.

Definition 2 A forbidden region from the set F is defined as a polyhedron Pg in
the state space S [11], specifying a disallowed operating region in the plant state space
(Eq. (3.2), where I is a finite set of integer indexes).

PS:{QL'ES

/\ a'x < b,} (3.2)

iel

This definition of a forbidden region as a polyhedron is based on two assumptions:
that the forbidden regions are convex, and that they are linear. The convexity as-
sumption is motivated by the fact that any non-convex region can be approximated
by a finite union of convex regions. The linearity assumption can be achieved by
linearizing the borders of the regions (Fig. 3-2).

A simple example of a forbidden region in the fire-fighting UAV scenario is a
no-fly-zone that the UAVs must avoid (Fig. 3-3 and Eq. (3.3), for UAV «;). Other
examples of forbidden regions in the multiple-UAV scenario are the bounds on nominal
velocities and accelerations; these are presented in detail in Section 4.2.1. Forbidden
regions may also be defined over both state variables and input variables; this enables
us to define unsafe regions of the form “The acceleration of a UAV should not exceed

some safety value when the UAV is close to a mountain by a certain distance.”

<
2
N
IN

N A\ e B
Ps—{(ssu) €S o L (3.3)

—yp A —x% < —zW

>
|

<
2

IN

3.2.3 Definition of a State Equation

As introduced in Def. 1, a plant model describes the dynamics of the plant through
a set SE of state equations, which model the evolution of the state vector s(t) as
a function of time and of the input vector u(t). In this section, we formally define
a state equation (Def. 3), and we illustrate the definition using our multiple-UAV
fire-fighting example.

General Case

Def. 3 introduces the definition of a state equation, in the general case.

Definition 3 Given a time discretization (to,t1,...) € RN ¢ state equation in SE
s a piecewise-linear relation, expressing the value of a state variable s, at all time
steps t;, as a function of s and u, at time step t; 1. This is presented in Eq. (3.4),

where fi : S +— R 1s a piecewise-linear function.

‘v’ti, Sk(tz) = fk<S(ti_1), ’U,(tz_1>> (34)

The set of state equations SE can also be written in a compact form, presented
in Eq. (3.5), where F = (f1,..., fu) is the vector function whose coordinates are the

scalar piecewise-linear functions f.

Vtz S(tz) = F(S(ti_1>, U(ti_l)) (35)

We define a general piecewise-linear function over the state space S as a function
for which there exists a finite partition S of S into subsets S;, such that the function
is linear over each of the subsets (Def. 4). We motivate the choice of a piecewise-
linear representation of the plant dynamics by the fact that it enables us to model
approximately any type of regular continuous plant dynamics, by locally linearizing
the physical laws of the plant. More generally, any regular function over S can be
approximated by a piecewise-linear function. Following the same argument as for

the forbidden regions in F (Section 3.2.2), we can assume that the subsets S; are

44

polyhedra Pg of S.

Definition 4 A function f : S — R is piecewise-linear if there exists a partition
Sy of S such that, for all Sj € Sy, the restriction fs; : S; — R of f on S; is linear.

Sy is called an underlying partition of f.

The following is an intuitive explanation for Eq. (3.5). Consider a partition Sg
that is an underlying partition for the piecewise-linear function F. Then Eq. (3.5)
can be rewritten as in Eq. (3.6), where the functions F\g, are linear. We provide an

example in the fire-fighting UAV domain at the end of this section.

W Vi (s u)(tio) € S = s(t) = Fig, (s(tio1), u(ti_y)) (3.6)

Note that in Eq. (3.4) and (3.5), we explicitly assume that the dynamic equations
are time-invariant, namely, that F does not depend on ¢;. We make this assumption
in order to simplify the equations presented in this thesis; however, it can easily be
relaxed by replacing Eq. (3.5) with Eq. (3.7), without fundamentally altering the

methods and algorithms presented in the subsequent chapters.

Vtz‘, S(tz) = Fti (S(ti_1>, u(ti_l)) (37)

Finally, in order for Eq. (3.5) to be a reasonable approximation of the plant
dynamics, the time discretization must be sufficiently fine-grained. In particular, in
the case of a regular time discretization t; = Ty + ¢ - At, the granularity of the time

discretization At must be sufficiently small with respect to the plant dynamics.

Examples of State Equations

Eq. (3.8) presents SE for a single fire-fighting UAV a4, where F is linear, rather
than piecewise-linear, and is represented in matrix format. At defines the granularity
of the time discretization [39]. This can be extended to the multi-UAV case by
expressing F with block matrices whose primitive matrices correspond to each of the

UAVs (Section 4.2.1).

45

[g | (10 At 0 | [am] (a2]
2
y™ 01 0 At y 0 Az e
(t:i) = (ti1) + 21T | (i) (3.8)
v 0 0 1 0 vot At 0 afjl
g | (00 0 1 | | vy | 0 At

In the previous example, the state equations we use to model the dynamics of the
UAVs are purely linear, rather than piecewise-linear (Eq. (3.8)). However, to give
a simple example to illustrate Eq. (4.9) in the more general piecewise-linear case,

consider a UAV model in which the z-component of the velocity v, saturates once

max

it reaches the value v}

. This can be expressed by the piecewise-linear relation in

Eq. (3.9), where f is a linear function.

U (tic1) SR = () = foe(tio), ax(tion))
A

max
x

(3.9)

ieton, | A vp(tion) >l = u(t) =v

An underlying partition for this piecewise-linear relation is the set of polyhedra
{Py, Py}, where P; = {x € S|v, <v™*} and Py = {x € S |v, > v™*}. Note that

max

v, > vp®™ must be replaced by the approximate relation v, > vy'** for Py to be a
proper polyhedron.

One can draw a parallel between this piecewise-linear representation of the plant
dynamics, and previous work on hybrid systems [5, 23]. Hybrid systems are systems
whose continuous dynamics depend on discrete modes they can be in. For instance,
in Eq. (3.9), the plant is described by two modes, identified by their respective con-
straints on v, (v.(tr—1) < v and v, (tx—1) > vI*). We describe in more detail
in Section 3.2.4 how our plant modeling formalism can be used to encode hybrid
automata, as defined in [23].

There are also many similarities with previous work in qualitative control [35, 36].
In [35], the plant’s state space is decomposed into a set of qualitative operating regions;

however, these operating regions do not necessarily form a partition of the state space.

On the contrary, two operating regions are allowed to overlap. Instead of using a strict

46

set membership function for the operating regions, a fuzzy set membership function
is used, and the state equation at a given pair (s,u) € S is defined as the weighted
average of the purely linear state equations over each operating region, where the
weights are given by the values of the corresponding fuzzy membership functions at

point (s, u).

3.2.4 Application to Hybrid Automata

In this section, we show how our definition of a plant model can be used to encode
hybrid systems, described as hybrid automata [5, 23]. We illustrate our encoding
using a thermostat example from [23]. Def. 5 is a definition of a hybrid automaton,

adapted from [23].
Definition 5 A hybrid automaton consists of the following components:

e A set X = {o1,...,00,01,...,0n} of real-valued variables, where the vector
o = (01,...,0,) is the vector of state variables, and v = (vy,...,v,) is the

vector of input variables.

e A finite directed multigraph (V, E), where the vertices in V correspond to the
different modes that the plant can be in, and the edges in E correspond to

mode switches, describing possible transitions between modes.

e Invariant conditions, represented by a node labeling function that associates,
to each mode in V', a predicate on X, that is, a set of linear equalities or
inequalities on the state variables, which must be satisfied when the plant is in

that mode.

e Flow conditions, similarly represented by a node labeling function that asso-
ciates, to each mode in'V , a first-order ODE on the state vector o, as a function

of the input vector v.

o Jump conditions, represented by an edge labeling function that associates, to
each mode switch in E, a predicate on X (or guard) that must be satisfied for

the mode transition to be allowed.

47

Figure 3-4: Thermostat hybrid automaton. [23]

An example of a hybrid automaton is the thermostat automaton in Fig. 3-4. The
continuous state variable x represents the temperature, whose evolution with time
depends on the discrete mode of the thermostat. If the thermostat is off, x evolves
following the flow condition © = —0.1z, and if it is on, the flow condition is & =
5 — 0.1z. The invariant conditions in this hybrid plant specify that the thermostat
may only be off if the temperature is above 18 (z > 18), and on if it is below 22
(x < 22). Finally, the jump conditions specify that the plant may transition from off

to on only if x < 19, and from on to off if v > 21.

To represent a hybrid automaton as a plant (according to Def. 1), we introduce a
mode variable m, whose domain corresponds to the different modes of the automaton.
For instance, for the thermostat automaton, m = 0 corresponds to the plant being
in the off mode, while m = 1 corresponds to the thermostat being on. Note that
this temporarily contradicts our initial assumption (Section 3.2.1), stating that all
variables in the plant model are continuous. We will show in Section 4.2.1 how
we can remove this contradiction, by relaxing the domain of m to R, while using a
underlying partition for the state equations that effectively constrains m to take on

values from a discrete domain.

We then set the input vector u(t;) of the plant to the input vector v(ty) of the
hybrid automaton, augmented with the mode variable m(t;). The state vector s(t)
is presented in Eq. (3.10), where & (t), ©(t;) and m(tx) store respectively the values
of o, v and m at the previous time step t,_;. This is enforced by introducing the
state equation Yk =1...N; (6,0, m)(tx) = (o, v,m)(tx_1). The reason we augment

the state vector with a history of the values of the state and input variables at the

48

previous time step, is to be able to encode the jump conditions as forbidden regions

in the state space, as we describe in a later paragraph.

s(tr) = (o (tr), o (tr), O(tk), m(ts)) (3.10)

We then encode the flow conditions as a piecewise-linear state equation, using a
partition § of the state space S that splits S into subsets .S; corresponding to the

different allowed values m! ... ml"l of the mode variable m, as presented in Eq. (3.11).

Si={(s,u) € S|m=m'} (3.11)

The intuition behind this partition is presented in Eq. (3.12), for the thermostat

example, where % is the time discretization for #(t;_1). Note the similarity

with Eq. (3.9). Note also that in the general case, the flow conditions may not be
purely linear; in that case, we use a sub-partition of S, so that the flow conditions are
linear on each subset S;. This corresponds to piecewise-linearizing the flow conditions.

mr_1=0 = % = —0.1$(tk_1)

A

=1.N, | A g1 =1 = % =5—0.1z(tx_1)

(3.12)

We encode invariant conditions as forbidden regions in the state space (Sec-
tion 3.2.2). In the thermostat example, the invariant condition on the off mode
specifies that * > 18 when the plant is in that mode. The corresponding forbid-
den region is the polyhedron Pg = {(s,u) € S|m =0 A z < 18}, imposing that the
thermostat is not allowed to be in the off mode (m = 0) when the temperature is
below 18 (z < 18).

Finally, transitions between two modes are also encoded as forbidden regions in
the state space. In the thermostat example, consider the transition from off (m = 0)
to on (m = 1), guarded by the condition z < 19. This transition is represented
by the polyhedron Pg = {(s,u) € S|m =0 A m=1 A x> 19}, which specifies
that a transition from off to on may not happen when the temperature is above 19.

Note that, according to the definition of a hybrid automaton in Def. 5, a guard on a

49

transition specifies whether or not the transition may happen. One could consider a
slightly different model, in which the guard would specify whether or not the transition
must happen; for instance, the guard = < 19 on the transition from off to on would
then specify that this transition must happen every time the thermostat is off and
the temperature is below 19 degrees. This would be encoded using the forbidden
region Pg = {(s,u) € S|m=0 A m=0 A z <19}, which imposes that the plant
is not allowed to remain in the state m = 0 when z < 19. This means that the
plant must necessarily transition to the only other mode possible, which is m = 1.
If the automaton had more than two modes, we would add one forbidden region
Ps ={(s,u) € S|m=0 A m=m' A z <19} for each mode m’ # 1, such that

the plant is not allowed to transition to any other mode than m = 1.

3.3 Definition of a Qualitative State Plan

As introduced in Chapters 1 and 2, our approach to the robust, coordinated control
of agile systems is a model-based approach, which elevates the interaction between
the human operator and the plant, to the level where the operator is able to control
the plant by specifying successive desired states the plant should be in, rather than
low-level command sequences that it should execute. Furthermore, these state tra-
jectories are specified at a qualitative level, as a series of feasible regions of the state
space, rather than specific states. This way, the operator can focus on the goals to
achieve, rather than on the means. This is especially important for agile systems with
continuous dynamics, for which manually designing command sequences would be a
very involved process. In addition, this level of abstraction offers the executive much
greater latitude to adapt to disturbances, than specifying a concrete state trajectory.

We allow the human operator, or a high-level planner, to specify the desired
sequences of goal states in a rich, temporally flexible manner, by formulating the
intended plant state evolution in the form of a qualitative state plan. A qualitative
state plan is a temporally flexible plan [17], with activities that specify qualitative

constraints on the state of the plant. The flexibility in the plan, both in terms of time

50

[0,20]
>CStart in [a; & a, at base]

Remain in [, at fire]
[5,8]

[12,0)

End in [o, at fire]

End in [o, at fire]

[6,90)

Remain in [, at fire]

Figure 3-5: Qualitative state plan in the fire-fighting example.

constraints and in terms of state constraints, provides sufficient control authority to
the autonomous controller to be able to robustly adapt to high-level disturbances and
unforeseen events, as introduced in Section 1.2.

In this section, we formally define a qualitative state plan, and we illustrate our

definitions with examples from the multiple-UAV fire-fighting scenario in Section 3.1.

3.3.1 Overall Definition of a Qualitative State Plan

Definition 6 A qualitative state plan P = (£,C, A, F) specifies a desired evo-
lution of the plant state over time, and is defined by a set € of discrete events, a
set A of activities, imposing constraints on the plant state evolution, a set C of
temporal constraints between events, and an objective function F', which must

be minimized.

We illustrate a qualitative state plan diagrammatically by an acyclic directed
graph in which the discrete events in £ are represented by nodes, drawn as circles,
and the activities as arcs with ovals. The qualitative state plan for the multiple-
UAV fire-fighting mission example (Section 3.1) is shown in Fig. 3-5. The mission

description involves five events:

1. The first event corresponds to the start event, at which both UAVs are at their

respective base stations (event e; in Fig. 3-5).

2. The second event mentioned in the mission corresponds to aircraft a; reaching

the fire, and starting to extinguish it (event ey).

51

3. Event ez in Fig. 3-5 is associated with the time instant when «; has just finished

extinguishing the fire.

4. Similar to event e, event ey happens when aircraft ay reaches the fire region

and starts taking pictures of the damage.

5. Finally, the last event mentioned in the mission is the end event, at which ay

has just finished taking pictures, and the mission is complete (event e5).

3.3.2 Definition of a Schedule

As mentioned before, a fundamental feature of qualitative state plans is that they are
temporally flexible plans, that is, the times at which each event in the plan must be
executed are specified in a flexible manner, rather than strictly scheduled beforehand.
As will be presented in Section 3.3.4, this means that temporal constraints between
two events are specified by lower and upper bounds in the duration between the two
events, rather than by a fixed imposed duration. This motivates the definition of a

schedule for a qualitative state plan P.

Definition 7 A schedule T for a qualitative state plan P is an assignment T :

E — R of execution times to all the events in P.

Note that this is the same definition as that of a schedule for simple temporal
networks [17]. Not all schedules are valid for a given qualitative state plan P; we will
later introduce a criterion for schedule validity (Def. 13). An important point here is
that, although in Section 3.2 we used a time discretization (to, 1, ...) to express the
dynamics of the plant, here a schedule is not restricted to take on values from this

time discretization; as mentioned in Def. 7, it can take on any real values.

3.3.3 Definition of an Activity

Def. 6 defined a qualitative state plan P as a tuple P = (£,C, A), where A is a

set of activities that describe the desired evolution of the plant state throughout the

52

execution of the state plan. In this sectoin, we formally define an activity, in terms

of a time interval that imposes a given state constraint on the plant.

Definition 8 An activity a = (es, ep,cs) has an associated start event es and an
end event eg. cg is called a state constraint on the variable (s, w), and can take
on one of the following four forms, where Rs, Rg, Ry and R3 are regions of the state

space S, and T is a schedule for P:

1. Start in state region Rg: (s, w)(T(es)) € Rs;
2. End in state region Rg: (s, w)(T(eg)) € Rg;
3. Remain in state region Ry: Vt € [T'(es), T(eg)], (s, u)(t) € Ry,

4. Go through state region R3: 3t € [T'(es), T(eg)], (s, u)(t) € R3.

As can be seen in Def. 8, there are two main types of state constraints in a
qualitative state plan: durative state constraints (remain in) and instantaneous state
constraints (start in, end in and go through). We will show in Section 4.2.2 that all
instantaneous state constraints can be expressed using an end in activity, such that
we can only consider remain in and end in activities, without loss of expressivity.

In Fig. 3-5, activities are represented by ovals between two events. An example
of a Remain in state region Ry activity is the one between events e; and ez, which
specifies that the plant should remain in the state where «; is in the fire region.
An example of an End in state region Rp is the activity between events e; and e,
specifying that the plant should follow a state evolution such that a; is in the fire
region at event e;. An additional example of an activity is one specifying that vehicle
a1 should remain in a state where its velocity is limited by a small maximum value
between events ey and ez, while it is dropping water on the fire.

The concept of a state activity, which specify a state constraint on the plant,
differs from previous work in hierarchical temporal planning [32] and classical STRIPS
planning [18], in that the basic element in the plan is not a command or a control

sequence that the plant must execute, but rather a qualitative description of the

53

desired state of the plant, regardless of the control sequences that are used to achieve
that state. Planners like Europa and HSTS incorporate state activities, but these are
not qualitative, and the planner does not deduce the mapping from states to control
actions from a model of the plant. As mentioned before, we use qualitative state
plans to encode a goal specification for the plant, rather than the means to reach
that goal. This allows the human operator or a mission-level planner to interact with
the plant at a higher level, and gives more flexibility to the model-based executive to
design low-level control sequences to achieve the qualitative high-level plan.

This flexibility in the goal specification is desirable for three reasons; first, it gives
the executive more opportunities to succeed, by defining a wider set of feasible op-
tions, described in an abstract, qualitative manner. Second, it delegates more control
authority to the executive, providing it with more options to recover from failure.
And third, it also gives the executive more options to achieve greater optimality,
since it has a wider set of feasible options from which to choose an optimal solution.

These three reasons are also the reasons presented in [53], in order to motivate the
use of qualitative control (Section 2.2.2). In [53], the plant is described using a model
that involves qualitative differential equations (QDEs), specifying the dynamics of
the plant at an abstract, qualitative level. The QDEs describe allowed transitions
between qualitative operating regions of the plant’s state space, allowing the human
operator to control the plant by specifying desired abstract, qualitative states the
plant should be in, leaving the task of designing detailed control inputs to the low-

level, autonomous controllers.

3.3.4 Definition of a Temporal Constraint

In a qualitative state plan, activities are composed together in order to describe
valid plant state trajectories over time. This composition is achieved through the
use of temporal constraints (Def. 9). As with the state constraints, these temporal
constraints are also qualitative, in that they are temporally flexible: rather than
specifying hard constraints on the times at which each event must be scheduled,

they specify lower and upper bounds on the duration between pairs of events in the

o4

qualitative state plan.

Definition 9 A temporal constraint ¢ = (eg,ep, AT;"™", AT,) is a con-
straint, specifying that the duration from a start event eg to an end event eg be in

the real-valued interval [AT™™, AT™* | C [0, +00].

es—eg) €s—€EE

Temporal constraints are represented diagrammatically by arcs between nodes,
labeled with the time bounds [AT;?™ AT* . In the fire-fighting, qualitative
state plan, in Fig. 3-5, an example of a temporal constraint is the one represented by
the arc e; — e5 labeled with the bounds [0, 20]; this specifies that the time interval
between events e; and e; should last longer than 0 time unit and no longer than
20 time units. Note that we allow the upper bound to be infinite; for instance, the
temporal constraint between events e; and ey specifies that e4 should be scheduled
at least 12 time units after e;, but effectively specifies no upper bound. In the case
when the lower bound is 0 and the upper bound is infinite, the temporal constraint is
equivalent to a simple precedence constraint, such as the one between events e; and ey,
specifying that e, should be scheduled after es.

Note that this concept of a flexible temporal constraint is the same as the temporal

constraints used in simple temporal networks [17].

3.3.5 Definition of an Objective Function

As introduced in Def. 6, a qualitative state plan describes the desired behavior of the
plant in time, both in terms of state and temporal constraints that must be satisfied,
and in terms of an objective function F' that must be minimized. In this section, we

formally define the concept of objective function (Def. 10).

Definition 10 Given sequences S = (s(ty), s(t1),...) and U = (u(ty), u(t1),...) of
state variables and inputs variables, respectively, and given a schedule T for a set of

events £, an objective function F' is a piecewise-linear, real-valued function over

S, UandT.

%)

Following the same argument as in Section 3.2.3, we can justify the piecewise-
linearity assumption by the fact that any regular function over S, U and T can
be approximated by a piecewise-linear function. An example of an objective func-
tion in the fire-fighting UAV scenario (Eq. (3.1)) is a function that accounts for
the amount of fuel required by the control sequence U = (u(ty), u(ty),...), where

u = (ay', agt, ag?, ay?). This cost function is given in Eq. (3.13).

F(S,U,T) = ozt)]+ fag ()] + lag ()] + lag®(t)] (3.13)

Another example of a simpler objective function is F'(S,U,T) = T'(ecpnq), which
can be used to minimize total plan execution time, by enforcing that the end event e.,q4
of the qualitative state plan be scheduled as soon as possible. This is the objective
function that we use in the multiple-UAV fire-fighting scenario.

Previous work in multi-vehicle model predictive control [57] tackled the problem of
designing fuel-optimal control sequences for multiple vehicles. Their approach, briefly
introduced in Section 2.3, is similar to ours, but has the key limitation that the goal
specification is limited to a single goal position that each vehicle must reach, using
a minimum amount of fuel. We extend this approach to richer goal specifications in

terms of qualitative state plans, within a model-based framework.

3.3.6 Comparison with Metric Interval Temporal Logic

One can draw a parallel between our definitions of state and temporal constraints,
and metric interval temporal logic (MITL), introduced in [6]. MITL is a logic-based
language to model real-time systems, which uses a dense representation of time. An
MITL-formula is formally defined in Eq. (3.14), where p is a proposition that is
required to be true. U; is the wuntil operator, where I is a time interval of left
bound /(1) and right bound (7). By definition, ¢y U ¢ is true at time ¢ if and only
if ¢ is true at time ¢, and remains true for at least {(I) and at most r(I) time units,

until ¢o becomes true.

56

Q:=pld| o1 A da| 1 Ur ¢ (3.14)

The following additional operators can be constructed from Eq. (3.14): the even-
tually operator {;, the always operator [1;, and the unless operator ;WW. ;¢ means
that ¢ must eventually be true at some time instant within the time interval I, and
is equivalent to true U; ¢. ;¢ means that ¢ must always be true during the time
interval I, and is equivalent to ={;—¢. Finally, ¢1 ;WW ¢9 means that ¢; must be
true at all times during the time interval I, unless ¢, becomes true before the end
of interval I, in which case ¢; may only be true until ¢, becomes true. ¢; ;W ¢5 is
equivalent to =((—¢2) Ur (—¢1)).

We can then encode activities from the qualitative state plan as MITL-formulae,
using the previous operators. We illustrate this on two examples: end in and remain

in activities.

e Consider an FEnd in state region Rp activity, starting at event eg and end-
ing at event ep, associated with a temporal constraint on events eg and eg
specifying that the duration between the two events should be within a time
interval I. Then, the state constraint on this activity imposes that the MITL-
formula {;((s,u) € Rg) be true at time T'(eg). This formula means that the

state constraint should eventually be verified at some point within interval I.

e Consider a Remain in state region Ry activity, starting at event eg and ending
at event eg, associated with a temporal constraint with time interval I. Then,
the state constraint imposes ((s,u) € Ry) U true at time T'(eg), which means
that the state constraint must be enforced until true is enforced, which may

happen during the time interval I.

This completes our definitions for qualitative state plan and plant model; in the

next section (Section 3.4), we use these to define the model-based execution problem.

57

3.4 Definition of the HMFEx Problem

In the introduction to this chapter, we introduced informally the Hybrid Model-based
Ezecution (HMEz) problem as the problem of designing an optimal control sequence
for a plant with continuous dynamics, that generates a plant state evolution satisfying
a qualitative state plan (Section 3.3). In this section, we formalize this problem, and
define its solution, through a hybrid model-based executive that maps the qualitative
state plan to an optimal control sequence, by reasoning on a model of the plant

(Section 3.2).

3.4.1 Definition of Hybrid Model-based Execution

Def. 11 presents the formal definition of a hybrid model-based executive. As discussed
later in this section, the main innovation of this executive with respect to previous
model-based executives is that it is able to control plants with continuous dynamics,
by reasoning from a model of the plant dynamics, and by designing an optimal,
complete, continuous control sequence, in order to execute the input qualitative state

plan.

Definition 11 Given an initial state s(ty), a plant model M, a qualitative state
plan P, and its corresponding objective function F', the Hybrid Model-based Ex-
ecution (HMEzx) problem consists of incrementally generating, for every time
step t;, an optimal control sequence (u(ty), ..., u(t;)), given a sequence of observa-
tions (o(ty),...,0(t;)). The final resulting control sequence U = (u(ty), u(t1),...)
must verify that there ezist a state trajectory S = (s(to), s(t1),...) and a schedule T
for the qualitative state plan P, such that the following propositions hold:

1. The objective function F(S, U,T) (Def. 10) is minimized;

2. The state sequence S 1is consistent with the sequence of observations O =

(o(ty), o(t1),...) and the input sequence U (Section 3.4.2);

3. (S, U) satisfies the plant model M (Def. 12);

58

Qualitative
Plant Model State Plan

Hybrid Model-based Executive
3 v

State Plant Hybrid
Estimator | State | Controller

! T Control Sequence

v
Observations Optimal Control
Sequence

Figure 3-6: Block diagram of a hybrid model-based executive.

4. (S, U, T) satisfies the qualitative state plan P (Def. 13);

5. (S, U,T) is complete (Def. 14).

As illustrated in Fig. 3-6, the HMEx problem can be decomposed into two different

sub-problems:

1. The problem of estimating the current state of the plant, at each point in time,
by reasoning from the plant model, the prior observations from the plant, and
the control inputs previously sent to the plant. This task is accomplished by the
state estimator, and corresponds to Item 3.4.2 in Def. 11: the state estimator
is responsible for enforcing that the state sequence S be consistent with the

observations.

2. The problem of incrementally generating a complete, optimal control sequence
in order to execute the input qualitative state plan, based on the plant model
and on estimates of the state of the plant. This task is performed by the hybrid

controller, and corresponds to Items 1, 3, 4 and 5 in Def. 11.

In the following subsections, we present in more detail each subproblem: state

estimation (Section 3.4.2), and control sequence generation (Section 3.4.3). We also

59

present the definitions for the concepts of consistency, satisfaction and completeness

introduced in Def. 11.

3.4.2 State Estimation

As shown in Fig. 3-6, the function of the state estimator is to provide estimates of the
plant state to the hybrid controller, by reasoning on the plant model, observations
from the plant, and previous control sequences sent to the plant. Hence, the state
estimator performs a mapping from an observation sequence O = (o(t1),0(t2),...)
and a control sequence U = (u(tp), u(ty),...), to a maximum likelihood state sequence
S = (s(t1),s(t2), . ..), given the plant model (Def. 11, Item 2).

In this thesis, we do not provide a solution for the state estimation problem.
In order to enable Sulu to estimate the state of the plant, the definition of a plant
model, presented in Section 3.2, would need to be extended in order to account
for observations. However, related work on hybrid estimation [12, 25] provides a
framework for the state estimator. [12] reasons on a model of the plant, described
using probabilistic, hybrid, concurrent automata (PHCAs), in order to continuously
track the most probable plant state trajectories.

In our work, we abstract away the state estimation problem, by assuming that
the hybrid controller has a unique, non-probabilistic knowledge of the state of the
plant at all times. This is equivalent to making a maximum likelihood assumption,
that is, assuming that the most likely trajectory provided by the state estimator is
the true trajectory. For instance, the hybrid estimator described in [12] continuously
tracks the state of the plant, by maintaining a finite set of trajectory estimates. In
that case, Sulu would only consider the estimate with the highest cumulative density,

and use its mean as the estimate of the plant state.

3.4.3 Control Sequence Generation

As introduced in Section 3.4.1, given estimates of the plant state provided by the

state estimator, the task of the hybrid controller is to iteratively generate a control

60

sequence U, for which there exist a state sequence S and a schedule T, such that:

1. (Item 1 in Def. 11) The control sequence U is optimal, that is, it minimizes the
objective function F'(S,U,T) (Def. 10);

2. (Item 3 in Def. 11) The state sequence S is the sequence that the plant follows
when it executes the control sequence U, that is, (S, U) satisfies the plant

model M (Def. 12);

3. (Item 4 in Def. 11) The state and input sequences and the schedule satisfy the
qualitative state plan P (Def. 13);

4. (Item 5 in Def. 11) The state and input sequences and the schedule are com-
plete. (Def. 14);

We formally define the three concepts of plant model satisfaction, qualitative state
plan satisfaction and completeness in the following definitions (Def. 12, 13 and 14,

respectively).

Definition 12 (Plant model satisfaction) Given a plant model M = (s, u,SE, F),
we say that a sequence (S, U) = ((s, uw)(ty), (s, w)(t1),...) satisfies plant model M

if the following two propositions hold:

1. (S, U) satisfies all the state equations in SE (Def. 3 and Eq. (3.5)):

VE=1,2,... s(ty) = F(s(te_1), s(ts_1))

2. (s(te), u(ty)) always remains outside of all forbidden regions Ps € F:

Vk=0,1,... VPs € F (s(t), u(ty)) ¢ Ps

Recall (Def. 1) that a plant model M imposes two types of constraints on the state
and input variables: constraints related to the state equations describing the plant

dynamics, and constraints corresponding to forbidden regions of the state space. As

61

Table 3.1: Example of a temporally consistent schedule T for the qualitative state
plan in Fig. 3-5.

e €1 | ey | es | eq4 | €5
T(e) 0612|1214

defined in Def. 12, a sequence (S, U) of state and input variables satisfies the plant

model if it satisfies these two types of constraints, at all time steps in the sequence.

Definition 13 (Qualitative state plan satisfaction) Given a qualitative state
plan P = (£,C, A, F), a state sequence S, an input sequence U, and a schedule T, we
say that (S, U,T) satisfies qualitative state plan P if the following two proposi-
tions hold:

1. The schedule T is temporally consistent, that is, T satisfies all the temporal

constraints in C, as defined in Def. 9;

2. (S, U,T) does not violate any of the activities in A, where the concept of ac-
tivity violation is defined as the opposite of activity satisfaction (Def. 8).

Intuitively, a tuple (S, U, T satisfies qualitative state plan P if it is consistent
both with the state constraints imposed by the activities, and with the temporal
constraints between these activities.

Consider the example qualitative state plan in Fig. 3-5. An example of a tem-
porally consistent schedule for this plan is presented in Table 3.1. This schedule is
one that minimizes total plan execution time; however, it does not correspond to any
tuple (S, U, T) satisfying all the activities in the qualitative state plan, as will be
illustrated in Section 6.2.

Note that the concept of temporal consistency for a schedule relates directly to
that of temporal consistency for simple temporal networks [17]: a simple temporal
network is said to be temporally consistent if it possesses a schedule that satisfies all

the simple temporal constraints in the network.

62

Definition 14 (Completeness) A tuple (S, U,T) is complete if and only if the
spans of the state sequence S and input sequence U cover the whole schedule T
(Eq. (8.15)), where the span of a sequence X = (x(t), ..., ®(tX,)) is defined as the

time interval [t{, tﬁx}. An incomplete tuple (S, U, T) is said to be partial.

t5 < mineeg(T(e)) < maxeee(T(e)) < 13 (3.15)

A tOU < min€€g<T(€)) < maxeeg(T(e)) < t][\Jf‘U

Intuitively, a tuple (S, U, T) is complete if and only if both the state sequence S
and input sequence U start at or before the time T'(€g4,+) at which the start event e
of the qualitative state plan is scheduled, and end at or after the time T'(e.,q) at which
the end event e.,q is scheduled. This way, the two sequences cover the complete
qualitative state plan execution.

For instance, consider the example schedule T presented in Table 3.1, for which
T(estart) = T(e1) = 0 and T'(eena) = T'(e5) = 14. Consider also a state sequence
S = (s(15),...,s(t},)), and an input sequence U = (u(ty),...,u(ty,)). Then the
tuple (S, U, T) is complete if and only if Eq. (3.16) holds.

S <o<14< 18
SJ— - zs (3.16)
Aty <0<14< 1Y

3.4.4 Comparison with Previous Work

The concept of a model-based executive, as illustrated in Fig. 3-6, is similar to previ-
ous model-based executives, such as Titan [66]. As presented in Section 2.2.1, Titan
consists of a Mode Estimation component (MFE), and a Mode Reconfiguration compo-
nent (MR). Similar to our state estimator, the function of ME is to provide estimates
of the state of the plant, from observations and from the history of commands pre-
viously sent to the plant. The function of MR is analogous to that of our hybrid
controller, in that it designs command sequences to be sent to the plant, in order to
reach a provided goal state. Both components use a plant model to map observations

to plant states, and abstract goal states to low-level commands.

63

However, as suggested by the names of ME and MR, Titan reasons on modes
that the plant can be in, where a mode is one of a finite number of discrete states,
described in the plant model. The commands sent to the plant are discrete commands
that incur instantaneous transitions between modes. In contrast, we control plants
with continuous dynamics, whose states are described by continuous variables, and
which require sequences of continuous control inputs.

The second fundamental difference with Titan is in the input goal specification.
While Titan takes as an input a single goal state and must design a command sequence
such that the plant reaches that goal state, our hybrid model-based executive accepts
a much richer goal specification, in terms of a qualitative state plan. The role of the
executive is then to design a sequence of continuous control inputs, in order to follow

the desired plant state evolution, within the temporal constraints of the state plan.

3.5 Overall Approach to Solving HMEx

Previous model-based executives, such as Titan [66], focus on reactively controlling
discrete-event systems. This approach is not applicable to temporal plan execution
of systems with continuous dynamics; our model-based executive, called Sulu, uses a
different approach (presented in Section 3.5.2) that consists of continuously planning
into the future, in order to perform optimal, safe execution of temporal plans.

One simple approach to planning into the future consists of starting from a known
initial position (provided by the state estimator), and generating a complete, optimal
control sequence that will lead the plant through a complete sequence of states that
satisfies the qualitative state plan. We call this approach infinite horizon HMFEzx, and
we present it in Section 3.5.1.

However, solving the whole HMEx problem over an infinite horizon presents two
major challenges. First, the problem is intractable in the case of long-duration mis-
sions. Second, it requires perfect knowledge of the qualitative state plan and the
environment beforehand; this assumption does not always hold in real-life applica-

tions, such as our fire-fighting scenario, in which the size and shape of the fire area

64

might precisely be known only at a late time during the execution of the mission
(Section 1.4). Furthermore, the executive must be able to compensate on-the-fly for
possible approximations or errors in the plant model. Section 3.5.2 presents how we
use a Receding Horizon framework (introduced in Section 2.3) in order to provide

this real-time adaptation functionality, and also to make the problem tractable.

3.5.1 Infinite Horizon HMEx

In Section 3.4, we defined the HMEx problem as the problem of designing an optimal
control sequence that drives the plant through a sequence of states satisfying the
desired plant state evolution specified in the qualitative state plan. In the infinite
horizon version of this problem, the model-based executive generates a complete
control sequence over a quasi-infinite horizon, in an offline phase, and then sends the
control sequence to the plant for execution. In this context, the planning horizon
corresponds to the span of the generated state and input sequences, and is assumed
to be sufficiently long to produce a complete, optimal control sequence that satisfies
the qualitative state plan.

As suggested in the introduction of this chapter, and as argued in [57] in the
similar context of multi-vehicle path planning, solving infinite horizon HMEx raises
a few important issues. First, in the case of long-duration missions, the model-based
executive needs to design control sequences over a planning horizon that is sufficiently
long, for the generated plant state sequences to be complete. Since the qualitative
state plan is temporally flexible, it is not possible to know beforehand how long it
will take to complete it. In this case, we need to adopt a conservative approach, by
choosing a very large planning horizon. This results in significant computational costs
that tend to make the infinite horizon HMEx intractable. A less conservative approach
would consist of choosing a reasonably small planning horizon, and augmenting it
iteratively if the model-based executive discovers that it is too short to complete
the qualitative state plan, or that the best solution found with this small planning
horizon is sub-optimal. This approach, however, can also be very computationally

intensive, if it takes several iterations to find a planning horizon that is sufficiently

65

long to generate complete, optimal sequences.

Furthermore, the infinite horizon approach lacks robustness, since it involves com-
puting a potentially very long control sequence, and then blindly executing it, as-
suming that the plant follows the computed state trajectory. In practice, there are
numerous causes that could prevent the plant from following that trajectory. This
includes unforeseen forbidden regions in the state space that could make the planned
trajectory infeasible, or disturbances that could make the plant deviate from its tra-
jectory. There could also be errors or approximations in the plant model used to
compute the control sequences, in which case the plant would not follow exactly the
planned state trajectory.

The above reasons motivate the use of an approach to solving HMEx that in-
terleaves planning and execution over short horizons. Planning over short horizons
makes HMEx more tractable, and continuous replanning provides robustness to dis-
turbances. We refer to this approach as receding horizon HMFEx, which is presented
in the next section.

This approach is very similar to related work described in Section 2.3, which ap-
plies receding horizon control to plants with continuous dynamics, such as industrial
chemical plants [21, 24, 51, 52, 54], or teams of UAVs [10, 39, 57]. The most im-
portant distinguishing feature with respect this work is that we use receding horizon
control in the context of the execution of a qualitative state plan, which is a much
richer description of the goal that the plant must accomplish than the ones used in
previous work. By describing the desired plant state evolution in an abstract, quali-
tative manner, our approach also delegates more control authority to the autonomous

controller to adapt to disturbances and unforeseen events, as argued in Section 3.3.

3.5.2 Receding Horizon HMEx

As introduced in Section 3.5.1, full horizon HMEx has limited applicability, since it
can quickly become intractable, and is not able to adapt to disturbances. In this
section, we present a similar approach, based on model predictive control, that makes

the problem more tractable, and provides robustness to disturbances.

66

Model predictive control (MPC; Section 2.3), also called receding horizon control, is
a method introduced in the field of Operations Research, in order to control industrial
chemical plants [21, 24, 51, 52, 54]. It was recently successfully applied to the low-
level control of spacecraft [55, 56] and teams of UAVs [10, 39, 57]. MPC solves the
control problem up to a limited planning horizon, and re-solves it when the plant
reaches a shorter execution horizon. This method makes the problem tractable by
restricting control sequence generation to a small planning window, and generates
control sequences that are optimal over the planning window, and globally near-
optimal.

In this section, we extend MPC to model-based execution of temporal plans for
hybrid systems, by describing our receding horizon, hybrid, model-based executive,

called Sulu. We formally define receding horizon HMEx as follows.

Definition 15 Let N, € [0,00) be the planning horizon, and n, € (0, Ny| be the
execution horizon. We use single-stage, limited horizon HMFEzx at time i,
to refer to the problem of designing a partial control sequence (u(ty), ..., w(ty,—1)),

grven:
1. A plant model M;

2. A known plant state s(t_ap,);

Co

. A history of observations for the plant (0(t_ap,), ..., 0(t_pn,));

BN

. A history of control inputs (u(t_sp,), ..., uw(t_n,_1)) that have already been exe-
cuted by the plant, and the control sequence (u(t_n,), ..., w(t_1)) that the plant

18 currently executing;

v

. A qualitative state plan P, and a history 7 = {{e;, T¢,) | Te, < to} of events in
the qualitative state plan that are scheduled before ty;

such that there exist a partial state trajectory (s(t_on,), ..., S(tn,)) and a schedule T
satisfying:

1. The objective function F({(s(to), ..., s(tn,)), (u(te), ..., w(tn,1)),T) is minimized;

67

) —1y n;
last sequence _, ¢ Sequence being next sequence
executed executed to be executed
< —>

Figure 3-7: Timeline illustrating the single-stage, limited horizon HMEx problem at
time to (Def. 15).

2. The state sequence (S(t_on,),...,8(t_pn,)) is a mazimum likelihood trajectory
estimate for the sequence of observations (o(t_ap,), ..., 0(t_p,)), the input se-

quence (u(t_op,), ..., u(t_n,—1)), and the plant model;
3. ((s(ton,)y- -, 8(tN,)), (ult—n,), .., ultn,—1))) satisfies the plant model M;
4. {(s(tg),...,s(tn,)), (ulto), ..., w(tn,—1)),T) satisfies the qualitative state plan P;

5. The times at which past events are scheduled remain unchanged, that is:

Vie;, T.,) € 7 T(e;) =T,

Definition 16 Given a plant model M, a qualitative state plan P, a sequence of
observations (o(Ty), . ..), and an initial state s(Ty), receding horizon HMEx is the
problem of iteratively solving single-stage, limited horizon HMFEx at successive times
to = To, Ty + nAt, Ty + 2nyAt . .. such that the tuple ((s(Ty),...), (u(Ty),...),T) is

complete (Def. 14), where At is the granularity of the time discretization.

Intuitively, the single-stage, limited horizon HMEx problem is the restriction of
the general HMEx problem (Def. 11) over a limited planning window (Fig. 3-7). One
important difference with general HMEx is that, since the spans of the state and
input sequences are now limited, the sequences are no longer required to be complete

(Item 5 in Def. 11), but rather are allowed to be only partial. We also require that

68

Plant Model Qualitative

State Plan
, L
S| 7, State 8(2,) | Hybrid T
Estimator Controller

A A

<0(f_zn, o 0(2,,)> <u(t0),. u(ty _1)>

Figure 3-8: Information flow diagram for the single-stage, limited horizon HMEx
problem at time to (Def. 15).

events that have previously been scheduled before t; remain scheduled at the same

time (Item 5 in Def. 15).

We illustrate Def. 15 in Fig. 3-8. Similar to the general HMEx problem, single-
stage, limited horizon HMEx can be decomposed into two subproblems: state estima-
tion, performed by the state estimator, and control sequence generation, accomplished
by the hybrid controller. The overall goal of receding horizon HMEx is for the hybrid
controller to design a control sequence (u(ty),...,u(ty,—1)) for the plant, over the
current planning window. To do so, the controller reasons from the plant model M,
the qualitative state plan P, and an initial plant state s(to). The purpose of the state
estimator is to compute an estimate $(ty) of this initial state.

Recall that, following the receding horizon control framework (Section 2.3), while
the model-based executive, Sulu, is solving single-stage, limited horizon HMEx at
time to, the plant is executing the partial control sequence (u(t_,,),...,u(t_1)) com-
puted at the previous iteration (Fig. 3-7). Hence, the state estimator does not have di-
rect access to s(tp), since the time ¢y has not been reached yet. In order to compute the
expected value §(tg) of s(tg), the state estimator first computes an estimate §(¢t_,,) of

the plant state at time ¢_,,, using the plant model, the previous known state s(t_s,,),

69

Plant Qualitative
Model State Plan

|
Hybrid Controller

A

Plant §(f,) Encode as Solve up Extract
State > Disjunctive to limited » Control
LP horizon Sequence

v

<u(t0),- . .,u(tNI _1)>

Control Sequence

Figure 3-9: Sulu’s receding horizon hybrid controller.

and the history of observations and control inputs received from (respectively, sent
to) the plant during the time interval [t_s,,,t ,,]. It then uses the plant model in
order to forecast an estimate §(tg) of the state that the plant will reach, once it has
finished executing the current control sequence (u(t_,,),...,u(t_1)).

The architecture for Sulu’s model-based, receding horizon, hybrid controller is
presented in Fig. 3-9. Given an initial plant state §(¢) provided by the state estimator,
the hybrid controller encodes both the plant model and the qualitative state plan as
a mathematical, optimization program, called a Disjunctive Linear Program (DLP,
Section 4.1). This DLP is then solved up to a limited horizon, corresponding to the
planning window [to, tx,] in Fig. 3-7. The new control sequence (u(tp), ..., u(tn,—1))
is then extracted from the solution to the DLP. As defined in Def. 16, this process
is repeated in order to compute an overall complete control sequence, by shifting the
planning window by n; - At at every iteration.

At every iteration, the hybrid controller gets a new estimate of the plant state
from the state estimator; this allows Sulu to adapt to disturbances and model ap-
proximations that may have caused the plant to follow a trajectory different from
the one that was planned when the corresponding control sequence was generated.
By re-planning every n; - At time units, Sulu is also able to revise the schedule T

computed at the previous iteration, in order to adapt to possible changes in the qual-

70

itative state plan. This was already introduced in Section 1.4, and will be illustrated

in more detail in Section 6.2.

3.5.3 Comparison with Related Work

Other ongoing work in the field of model-based programming addresses HMEx using a
slightly different approach [26]. In order to simplify the problem to make it tractable,
rather than using a receding horizon approach, [26] uses a feedback-linearization
approach that effectively transforms a non-linear, multiple-input, multiple-output
(MIMO) plant, into a set of partially decoupled, linear, single-input, single-output
(SISO) plant abstractions, which are much easier to control than the original plant.
To control each linear SISO abstraction, they use a classical PID controller, whose
gains and set points are determined by the model-based executive, in order to main-
tain synchronization between the different abstractions, and complete the qualitative
state plan, while adapting to disturbances.

The feedback-linearization technique in [26] potentially enables the model-based
executive to control more complex plants than the simple piecewise-linearization
method we use in this thesis. However, their approach relies on the fact that the
SISO abstractions can be almost completely decoupled, and that the only coupling
constraints are temporal constraints from the qualitative state plan, which specify
synchronization requirements between the SISO abstractions. In particular, they as-
sume that any given state constraint in the qualitative state plan can only involve
two state variables, which must correspond to the position and velocity of the plant,
for a particular dimension of motion. For instance, in the case of a bipedal walking
plant [26], a goal region may only involve the position and velocity of one component
of the center of gravity or center of pressure of the biped. This results in a loss of
expressivity, compared to our more general approach, as defined in Def. 8.

On the other hand, the use of automatically generated PID controllers in order
to control the SISO abstractions provides much more reactivity to the model-based
executive. In the approach presented in this thesis, the reaction time of the executive

is equal to the execution horizon, which corresponds to the rate at which the executive

71

replans, taking into account the latest knowledge about the state of the world. In
some applications, such as the simple example of an inverted pendulum, the executive
must be able to react very fast, since the plant is highly unstable and has very fast
dynamics. This would require choosing a very short execution horizon, which would
entail that the performance of the executive would heavily rely on the quality of the
guiding heuristic. Future work could look into first applying the offline, feedback-
linearization technique in [26] to the plant, and using automatically generated PID
controllers for the resulting SISO abstractions; Sulu would then generate gains and
set points for the controllers, rather than directly generate the control inputs for
the plant. Furthermore, Sulu would not require quasi-decoupling between the SISO
abstractions, which is the main assumption that induces a loss of expressivity in the

qualitative state plans in [26].

This approach would be very similar to the approach in [26]; however, in [26],
the model-based executive relies on “tubes”, that is, on pre-computed trajectory
envelopes that the SISO abstractions must remain in. The fact that the tubes are
pre-computed offline makes the executive less robust to high disturbances, and to
higher-level unforeseen events. For instance, if a disturbance occurs that displaces
one of the SISO abstractions out of its tube, then the executive aborts, returning
that the problem is infeasible. Being able to recover from such high disturbances
would require the capability to compute new tubes on the fly, or switch to other pre-
computed tubes, which is mentioned in [26] as future work. This would also enable
changes to the qualitative state plan at execution time, which is currently not allowed.
Sulu’s continuous planning approach would solve this problem, because it would not
rely on pre-computation of tubes in order to control the SISO abstractions. The PID
controllers would provide the resulting model-based executive with high-frequency
reactivity, and robustness to limited, low-level disturbances, while Sulu would enable
it to react in real-time, at a lower frequency, to higher disturbances and high-level
unforeseen events, such as changes in the qualitative state plan. This is a promising

area of future work.

72

In this chapter, we defined the problem we are addressing in this thesis, which we
call Hybrid, Model-based Ezecution (HMEx, Section 3.4). HMEx is the problem of
generating a control sequence for a plant, given a plant model, and a goal specification,
described in the form of a qualitative state plan. The plant model we use (Section 3.2)
is able to describe plants with continuous dynamics, and can also be used to describe
hybrid systems, whose continuous dynamics depend on discrete modes. We defined
a qualitative state plan (Section 3.3) as a qualitative, flexible description of the goal
that the plant must achieve; this abstract, qualitative description allows us both to
elevate the interaction between the plant and the human operator, and also to give
more control authority to the autonomous controller, in order to adapt to disturbances
and unforeseen events. Finally, we introduced Sulu, a hybrid, model-based executive
that solves HMEx by using a receding horizon approach, which consists of iteratively

reasoning over shifting planning windows (Section 3.5).

73

74

Chapter 4

Encoding the HMEx Problem as a

Disjunctive Linear Program

In this chapter, we present in detail how the plant model and the qualitative state plan
are encoded as a Disjunctive Linear Program (DLP). We first present the high-level
concepts involved, and we compare our approach with previous approaches (Sec-
tion 4.1). We then present the DLP encodings in detail, in the simplified case of
Infinite Horizon HMEx (Section 4.2). We finally introduce the changes that have to

be made to the encodings, in order to solve Receding Horizon HMEx (Section 4.3).

4.1 Overall DLP Approach and Comparison with

Previous Work

Recall (Section 3.5.2) that part of our approach to solving the HMEx problem is
to encode it as a Disjunctive Linear Program (DLP). This involves encoding all the
constraints mentioned in both the plant model and the qualitative state plan, using

the DLP formalism introduced in this section.

5

4.1.1 Motivation

As described in the previous chapter, the HMEx problem is a hybrid decision/control
problem (HDCP) [34]. The decision-making component of the problem comes from
the plant model, which specifies that the plant state is constrained to evolve in a
non-convex state space. For instance, in the UAV no-fly-zone example presented in
Fig. 3-3, the hybrid model-based executive must design trajectories for the UAV that
avoid the no-fly-zone so that, at all times, the UAV is either on top, below, to the right,
or to the left of the no-fly-zone. The optimization part of the problem comes from
the fact that the qualitative state plan defines an objective function (Section 3.3.5)
that the model-based executive must minimize. In the fire-fighting UAV example,

the objective can be to minimize fuel consumption.

In order to encode both the plant model and the qualitative state plan as a single
mathematical program, as described in Section 3.5.2, the mathematical programming
formalism must be able to express the two aspects of the problem: the decision-making
aspect, and the optimization aspect. In this section, we show that the Disjunctive
Linear Programming formalism [9, 34, 42, 43] is able to express these two aspects,
and allows us to encode HMEx as an optimization problem, subject to constraints

described as logical formulae over linear constraints on the variables of the problem.

DLPs can be solved by reformulating them as Mixed-Integer Linear Programs
(MILP), and by using off-the-shelf MILP solvers, such as Ilog CPLEX [2]. Other
work addresses solving DLPs directly [34, 42, 43]. In particular, [42] showed that
one could design a DLP solver that takes advantage of the structure of the DLP, and
use conflict-directed branch-and-bound search techniques that lead to a significant
improvement in solving time, over traditional branch-and-bound MILP approaches,
for which the search tree is much larger. This is an important motivation for using the
DLP formalism in this thesis, rather than MILP. As argued in Section 4.2.1, another
reason for choosing DLP is that it involves encodings that are more natural for a

human to comprehend than MILP.

76

4.1.2 Disjunctive Linear Programming Formalism

As introduced in Fig. 3-9, we solve each single-stage limited horizon HMEx problem
by encoding it as a disjunctive linear program [9, 34, 42, 43], defined in conjunctive

normal form in Definition 17.

Definition 17 A disjunctive linear program (DLP) is an optimization problem
with respect to a linear cost function f over a vector x of decision variables, subject
to linear constraints on . In conjunctive normal form (CNF), each constraint

is a disjunction of linear inequalities (Eq. (4.1)).

Minimize : f(x)

(4.1)
Subject to: N\;(V; gi(2) < cij)

Any arbitrary propositional logic formula whose propositions are linear inequalities
is reducible to a DLP in conjunctive normal form. Hence, in this thesis, rather
than the formulation in Definition 17, we use a more convenient DLP formulation,

presented in Definition 18.

Definition 18 A disjunctive linear program in propositional form is a DLP in
which the constraints are expressed by a formula in propositional form (Eq. (4.2)),
where ®(x) is defined in Eq. (4.5).

Minimize : f(x)

(4.2)
Subject to: D(x)

O(z) = d(z) AD(z) | D(z)V O(a) | ~d(2) |

(4.3)
P(z) = o(z) | 2(x) & () | g(x) <c

4.1.3 HMEx as a DLP

As previously mentioned in Section 3.5.2, we use the DLP formalism to encode both

the plant model and the qualitative state plan. To do so, we encode the vector x of

decision variables of the DLP as follows (Eq. (4.4)).

7

x = (s(to), ... s(tn,), ulto), ... ultn, 1), T(er), .. T(ee)) (4.4)

As presented in Eq. (4.4), the vector x consists of both the plant state and input
variables s(t) and u(t) at each time step t in the planning window, and the time
T(e) at which each event e € £ is scheduled. In the case where the objective is to
minimize total plan execution time, the DLP cost function f(x) would simply be
equal to T'(€enq), where e, is the last event in the qualitative state plan. In the
following sections, we describe in more detail how we encode the objective function
in the general case, and what formula ®(x) we use to encode the constraints in the

plant model and in the qualitative state plan.

4.1.4 Relation with Previous Work

One can draw some similarities between the approach to encoding and solving HMEXx,
as introduced in this section, and previous work in planning. For instance, [44]
encodes temporal planning using the PDDL2.1 framework for durative actions, and
solves the STRIPS problem using a modified version of the Graphplan algorithm.
This new algorithm, called LPGP, uses the layers in the graph in order to capture
points in time at which events occur, rather than the uniform flow of time, as in
traditional Graphplan-based systems. Other work in Satplan [28, 29, 30, 31] encodes
classical STRIPS planning using propositional logic, and uses a SAT solver to solve
the resulting SAT formulae. Similarly, in this thesis, we encode the HMEx temporal
planning and control sequence generation problem as a disjunctive linear program,
which is a combination of propositional logic and linear programming, and we use a

DLP solver to solve the problem.

4.2 Encoding Infinite Horizon HMEx

This section introduces the DLP encodings for the plant model (Section 4.2.1), and
for the qualitative state plan (Section 4.2.2), in the context of Infinite Horizon HMEx.

78

Recall (Section 3.5.1) that the fundamental assumption of Infinite Horizon HMEx is
that the number of time steps V; in the planning horizon is sufficiently large to cover
the whole plan execution; hence, all activities are scheduled between the initial time

step tp and the final time step ty,.

4.2.1 Plant Model Encodings

We first present the encodings in the general, domain-independent case; we then illus-
trate how these general encodings apply to the multiple-UAV model, before turning

to qualitative state plan encoding.

Plant Model Encodings in the General Case

Recall (Section 3.2) that a plant model M consists of a set of forbidden regions F
defining disallowed operating regions in the plant’s state space, and a set of state
equations S&, describing the dynamics of the plant. There is also a third type of
constraints, consisting of the constraint specifying an initial value sy for the plant
state vector s at the first time step ty. In the next paragraphs, we present the DLP

encodings for these three types of model-related constraints.

Forbidden Region Encodings: Forbidden regions are represented by polyhe-
dra Ps in the plant’s state space S, as defined in Def. 2 and Eq. (3.2), reported

below (Eq. (4.5), where [is a finite set of integer indexes).

PSZ{XGS

Nalx < bi} (4.5)

i€l

Eq. (4.6) presents the DLP encoding for the constraint that the plant state s
and the input vector u remain outside of Pg at all times. Intuitively, this encoding
corresponds to the constraint A\,_, v (s(tx), u(tx)) ¢ Ps. This requires, for all time

steps tx, that (s(fx), u(tx)) be outside of the forbidden region.

79

A 3V Al = b (16)

k=0..N; | i=1..npg

Examples of such forbidden regions and their corresponding encodings for the

UAV case will be presented later in this section.

State Equation Encodings: In the following paragraphs, we present the DLP
encodings for state equations in the plant model. We first present them in the general

case, and we then give an example.

State Equation Encodings in the General Case: Recall that a state equa-
tion in S is defined by a piecewise-linear relation expressing, at all time steps g,
a state variable s; as a function of s and u at time step f,_;. This is expressed in
compact form in Eq. (4.7), where F is a piecewise-linear function (Def. 4) over the

plant’s state space S.

A s(te) = F(s(tir), ulti-1)) (4.7)

k=1...N,

Let S = {S; C S} be an underlying partition for F (Def. 4). Then, as introduced
in Section 3.2.3, Eq. (4.7) becomes equivalent to Eq. (4.8). This translates to the
fact that, for all time steps ¢, and for all subsets S; € S, if (s,u)(ty—1) € S5},
then the piecewise-linear expression F(s(tx_1), u(tx_1)) simplifies to the purely linear

expression F|g, (s(tr-1), u(tx—1)), where Fg; is the restriction of F to the subset ;.

(s,u)(ty_1) € S;

A A ’ (4.8)

k=1..N, | s;es | = S(te) = Fis, (8(tk-1), u(tr-1))

Empirical tests using CPLEX (Section 6.3) showed an important gain in solution
time by using the equivalent encoding in Eq. (4.9). The rationale behind this encoding
is the following. For all time steps tg, since § is a partition of S, S covers the whole
state space S, hence, whatever the value of (s,u)(t;_1), there must exist a subset

S; € S that contains (s, u)(tx-1), and over which F = F|g,. The formal proof for the

80

equivalence between Eq. (4.9) and Eq. (4.8) is presented in Appendix A.

/\ (s,u)(ty_1) € 5; (4.9)

k=1..N; | s;es | A s(tr) = Fis;(s(te—1), ultp—1))
A key property of Eq. (4.9) is that it is in DLP form, since F|g, (s(t3—1), u(tx—1)) is
a linear expression (F is piecewise-linear of underlying partition §), and, following the
argument in Section 3.2.2, we can assume that the subets S; are polyhedra Pg, such

that (s(tx_1),u(tx—1)) € S; can be re-written in the linear form given in Eq. (4.10).

A al (s(t),u(te)) < by (4.10)

l:l...nps

Examples of State Equation Encodings: In Section 3.2.3, we introduced a
very simple example of piecewise-linear state equation, in the case of a UAV model
in which the z-component of the velocity v, saturates once it reaches the value v;'**
(Eq. (3.9)). Similar to Eq. (4.9), we encode Eq. (3.9) using the DLP formula presented
in Eq. (4.11).

Vg (tpoq) < viex
(4.11)
k=1...N; Uz (tp—1) > U™ + €

N vg(ty) = viex

(

A vp(te) = flog(tp—1), az(tr—1))
A (
(

\ J
Another example introduced in Section 3.2.4 involves a thermostat, modeled as a
hybrid automaton. We showed that the state equations for this plant were described

by Eq. (3.12). The corresponding DLP encoding is presented in Eq. (4.12).

mrp_1 — 0
z(ty)—2(tk—1)
N =il = (0. 1x(t—
A At (t-1) (4.12)
k=1..N; mi—1 =1
\/ I(tk)—x(tk 1)
\ VAN T =5-— Ol‘l'(tkfl)

Note that, in Section 3.2.4, we argued that, in order to be able to describe the

81

thermostat automaton using the plant model formalism introduced in Section 3.2, we
had to constrain the mode variable m to take on a finite set of discrete values, which
contradicted the definition of a plant model, in which all variables involved were real-
valued variables. Eq. (4.12) allows us to remove this contradiction, by extending the
domain of m to R, since Eq. (4.12) effectively constrains m to take on values only
from the set {0,1}. Therefore, it is not necessary to explicitly require m to have a

finite, discrete domain.

Initialization Constraint Encoding: This constraint specifies an initial value sg
for the plant state vector s at the first time step to. The DLP encoding is straight-
forward, and presented in Eq. (4.13).

s(to) = so (4.13)

Plant Model Encodings in the Multiple-UAV Example

In this section, we demonstrate the plant model encodings on the multiple-UAV
example, before turning to the encoding of the qualitative state plan. These example
encodings are adapted from the model introduced in [39].

Recall that the constraints in the plant model are of three types: the constraints
imposed by the forbidden regions in F, those corresponding to the state equations in
SE&, and the initialization constraints. In our multiple-UAV example, F includes the

following forbidden regions:
1. No-fly-zones in the z/y subspace of each aircraft;

2. Regions of S in which the velocity of a given aircraft is lower than its minimum

allowed value;

3. Regions of S in which the velocity or the acceleration of a given aircraft is

greater than its maximum allowed value;

4. Unsafe regions of S in which the two aircraft are too close to each other.

82

/\ —t

), (ko)
<xlvf,yi>% (xe-y2)

Figure 4-1: Rectangular no-fly-zone in the UAV fire-fighting example.

In the following paragraphs, we go through each of these types of forbidden re-
gions, and we give the corresponding DLP encodings. Note that most of these encod-
ings were adapted from [39]; the main difference is that [39] uses a MILP formalism,
rather than a DLP formalism to encode the constraints. The MILP formalism re-
sults in encodings that are arguably less natural for a human to comprehend than
the ones we present in this thesis. More importantly, as mentioned in Section 4.1.2,
efficient conflict-directed branch-and-bound algorithms can be designed in order to
solve DLPs, which take advantage of the structure of the DLP to construct a search
tree that is significantly smaller than MILP search trees, leading to significant im-

provement in solution time and space [34, 42, 43].

No-fly-zone Avoidance [39]: Eq. (4.14) presents the DLP encoding for a for-
bidden region for aircraft «;, when the forbidden region R is a no-fly-zone in the
vehicle’s x/y subspace. To keep this example simple, we assume that R is rectangu-
lar (Fig. 4-1), and is represented by its North-East corner (z%, y¥) and South-West
corner {x% y2). In a more general case, when forbidden region R is represented by
a polyhedron Pg (Eq. (4.5)), the corresponding encoding is the same as in Eq. (4.6).
It can also be extended to the case when forbidden region R has a more general,
non-convex shape, by approximating R by a finite union of convex regions, and by

linearizing each region (Section 3.2.2).

83

Figure 4-2: a) Forbidden region corresponding to values of the velocity smaller than
the minimum allowed value; b) Linearized version of the forbidden region.

yeity) >y

x%i(ty) > P
A () = (4.14)
k=0...N; yi(ty) < yd

x%(ty) < :EZV

0 J

Intuitively, Eq. (4.14) specifies that, at every time step t;, aircraft a; should be
either on top, to the right, below, or to the left of the forbidden region. Note that
this encoding assumes that vehicles are modeled by points that have no volume; as
mentioned in [39], safety margins must be added around the no-fly-zones to account
for the vehicles’ actual volume, and also to prevent a trajectory from crossing the

corner of a forbidden region between two time steps. More specifically, we assume

that navigation is taking place in the configuration space [45].

Minimum Velocity [39]: Consider a given aircraft «;; the forbidden region corre-

(7]
min

sponding to values of the velocity smaller than the minimum allowed value v % for «;
is simply a sphere in the v, /v, subspace of «;, centered at (0, 0), and of radius equal to
the minimum velocity (Fig. 4-2a). In order to encode the forbidden region using the
DLP formalism, we linearize this forbidden region by approximating the sphere with
a regular polyhedron (Fig. 4-2b). In our implementation, we use a dodecahedron.

The DLP constraint can then be encoded using the general encoding in Eq. (4.6).

84

For this special type of regular polyhedron, we use the encoding in Eq. (4.15), for
each aircraft a; (with J = 12 in the case of a dodecahedron). Similar to Eq. (4.14),

this encodes that, at all time steps ¢, the velocity vector (v, v?l) should be outside

of the polyhedron, with respect to one of its sides (identified by its index j).

ALy v (ty,) - cos(%) - (4.15)

o . j — Ymin
k=0..N; |j=t.s | + vyi(te) - sin(=F)

N

Maximum Velocity and Acceleration [39]: To impose a maximum value on
the velocity and the acceleration of every aircraft «;, we use the same method as
for the minimum velocity in the previous paragraph, but we require that the plant
state remain inside of the polyhedron. The corresponding encodings are presented in

Eq. (4.16) and (4.17).

A P AR TEORUT (4.16)

k=0..N; | j=1..0 | + vyi(te) sm(QJT”)
a%i(ty) - cos(2T
A P e C) (4.17)

k=0..N; | j=1.0 | + ag(ty) - sin(=F

Aircraft Inter-collision Avoidance: Consider two aircraft a; and «;. For a given
position (xy?,yy*) of aircraft «;, aircraft a; must remain outside of the forbidden
region corresponding to the sphere in the 2% /y® subspace, centered at (x® y*) =
(x5, yo"), and of radius (€% 4 €*) (where €% is the safety margin to be maintained
around aircraft «; [39]). In much the same way as for the bounds on the velocity and
accelerations, presented in the preceding paragraphs, we linearize this sphere using a

regular polyhedron. In our implementation, we simply use a square.

()
% (tk) _ xai(tk) > €% 4 (%
Voox%i(ty) — x% (ty) > €¥ + €Y
/\ (k) (k) > (4.18)
k=0, | VoYY (te) —yri(tr) > € + e
|V) -y z e

The DLP encoding for the corresponding constraint is presented in Eq. (4.18).
Intuitively, it encodes the requirement that for all time steps tj, aircraft o; and o;
must remain distant from each other by at least € + €%, either in the x or in the y

direction.

State Equations: As introduced in Section 3.2.3, all the state equations for a given

aircraft o; can be written in compact form, presented in Eq. (4.19) and (4.20).

f 7 B T)
1;042 :UOQ'
A (te) = A (te—1) +B- (te_1) (4.19)
k=1...N, (D v a%i
e R)
1 0 At 0 A
01 0 At 0 4f
A= . B= (4.20)
00 1 0 At 0
00 0 1 0 At

Matrices A and B can then be used to write the DLP encoding for the overall

plant state equation, presented in compact form in Eq. (4.21).

A B
N {ste) = . z -s(tp_1) + . u(ter) (4.21)

Initialization Constraint: Recall that the initialization constraint is the con-
straint that initializes the value of the state vector s at the initial time step ty5. As
presented in Eq. (3.1), in the multi-UAV example, the state vector s consists of the
Cartesian coordinates of the position and the velocity of each UAV. As a result, in
the case of two aircrafts a; and aq, the general DLP encoding in Eq. (4.13) translates

to Eq. (4.22).

86

(3\
x(to) = 25" Ay (o) =yp"
VI (ty) = (vt AN v (ty) = (v
x (0) (x)0 y (0) (y)0 (422)
2 (t) = 25> A Yy (to) = yp*
\ vz (to) = (v2%)o A vy (to) = (v5?)o |

4.2.2 Qualitative State Plan Encodings

The second component of the problem statement to be encoded is the qualitative state
plan. Recall that the qualitative state plan specifies the set of feasible trajectories
that the plant is allowed to traverse. This section presents the qualitative state plan
encodings as a DLP. Recall that the qualitative state plan incorporates two types of
constraints: temporal constraints between events, and state constraints, associated
with activities in the plan. It also incorporates an objective function, which Sulu

must minimize in order to achieve optimality.

Temporal Constraints Between Events

Eq. (4.23) encodes a temporal constraint between two events, eg and eg. For example,

in Fig. 3-5, events e; and e5 must be distant from each other by at least 0 and at most

20 time units; in that case, Eq. (4.23) becomes T'(e5)—T'(e1) < 20 A T'(e5)—T(e1) > 0.
T(eg) — T(es) < AT™>

cser (4.23)
A T(GE) — T(es) 2 AT

es—eg
State Constraints

Recall (Section 3.3) that activities are of the following types: “Start in state re-
gion Rg”, “End in state region Rg”, “Remain in state region Ry” and “Go through
state region R3”. Start in and go through activities are derivable from end in activ-
ities (Fig. 4-3 and 4-4). Hence, we only present the encodings for the two primitive
types remain in and end in. In each case, we assume that the state regions Rg and
Ry are polyhedra (Eq. (4.5)), such that (s(¢),u(t)) € Rg and (s(t),u(t)) € Ry can
be expressed as DLP constraints, similar to (Eq. (4.6)).

87

[AT. AT]

min* max

(et (o)

[0,0] [AT. AT]

min? max

()

Figure 4-3: Derivation of a start in activity from an end in activity.

[AT . AT]

min * max

e Go through R e

() .

[AT . AT]

min ? max

Figure 4-4: Derivation of a go through activity from an end in activity.

88

Remain in activity: Eq. (4.24) presents the encoding for a remain in state Ry
activity between events eg and eg. This imposes (s(t),u(t)) € Ry for all time steps

te[T(es), T(eg)]-

T(eg) S tk
A = (s(t),u(ty)) € Ry (4.24)

k=0...N; N T(eg) >t
Intuitively, this encodes that, for all time steps ty, if the start event eg is scheduled
before t;, and the end event eg is scheduled after t;, then we must enforce that (s, u)
be in the goal region Ry at time step . In the multi-UAV fire-fighting example, the

activity “Remain in state [a; at fire]” imposes the constraint that a; must be in the

fire region between ey and e3, while it is dropping water.

End in activity: Consider an end in activity, imposing (s, u) € Rg at time T'(eg),
that is, when event eg is scheduled. The encoding (for infinite horizon HMEx) is
presented in Eq. (4.25), which translates to the fact that there must exist a time
step tx that is e-close to T'(eg) and for which (s(t),u(t)) € Rg. We assume here that
the time discretization is regular, of granularity At (tx.; = t + At for all k), such

that the time step ¢ is required to be §-close to T'(ep).

T(eE) Z tk — %
R=0-Ne | A (s(tr),u(ty)) € Re

Intuitively, one would want to encode the constraint (s(T'(eg)), u(T(eg))) € Rg.
Recall, however, that T'(eg) is allowed to take any real value, while s(¢) and u(t)
are only defined for values of ¢ that correspond to one of the time steps t;. For this
reason, we encode that (s(t), u(tx)) € Rg must be enforced for the time step ¢, that

is the closest to T'(eg).

An example of such an activity in our fire-fighting scenario is the “End in [ay at

fire]” activity imposing as to be in the fire region at event ey.

89

Objective Function Encodings

Recall (Section 3.3.5) that the goal specification for Sulu, described in the form of
a qualitative state plan, involves minimizing a given objective function F(S,U,T),
which is a piecewise-linear function over a state sequence S, an input sequence U
and a schedule T'. The intuitive, direct DLP encoding for the objective function
would be to add F(S,U,T) to the DLP cost function. However, the definition of a
disjunctive linear program (Def. 17) requires that the cost function be a purely linear
function of the DLP variables, which is not the case of F(S,U,T) in general, since
F' is piecewise-linear. To solve this issue, we introduce a new DLP variable ¢, which
we add to the DLP cost function, while constraining ¢ to be equal to the value of the
objective function. The resulting encoding is presented in Eq. (4.26), where Sr is an
underlying partition for F', in which each of the subsets S; € Sg can be assumed to
be polyhedral. Note the similarity with the encoding for the piecewise-linear state

equations (Eq. 4.9).

Minimize : c
(S,U,T) € S, (4.26)

Subject to: \/q
ST A o= Fg,(8,U,T)

In this section, we presented how we encode both the plant model and the qualita-
tive state plan as a DLP, in the case of infinite horizon HMEx. However, as argued in
Section 3.5.2, the infinite horizon approach to HMEx is not robust, and can quickly
become intractable. To tackle this issue, we introduced another approach, receding
horizon HMFEz, that consists of iteratively solving HMEx over small, shifting planning
windows. In the following section, we describe what changes need to be done to the

DLP encodings in order to encode receding horizon HMEx.

90

4.3 Encoding Single-stage Limited Horizon HMEx

In the previous section (Section 4.2), we presented the DLP encodings for the plant
model and the qualitative state plan, in the case of infinite horizon HMEx. Recall
that the fundamental assumption of infinite horizon HMEx is that the number of
time steps /Ny considered, is sufficiently large to cover the whole state plan execution;
hence all events in the plan are guaranteed to be scheduled between the first time
step tp and the last time step ty,.

In receding horizon HMEx, we iteratively solve single-stage limited horizon HMEx
problems, where each problem considers only a small number of time steps; hence,
all events are no longer guaranteed to be scheduled between ¢y and ty,. As a con-
sequence, the encoding of end in activities has to be revised, as presented in Sec-

tions 4.3.1 and 4.3.2.

4.3.1 Revised Encoding for End in Activities

Consider an end in activity that imposes (s, u) € Rg at the time T'(eg), when event eg
is scheduled. Eq. (4.25) can no longer be used, since the planning window is no longer
guaranteed to cover the whole plan execution. As a result, there might not exist any
time step ?j in the planning window that is %—close to T'(eg). To handle this, we use

the revised encoding presented in Eq. (4.27).

V A < >
k=0...Ny A (s(ty),u(ty)) € Rg (4.27)
V T(GE) S tg — %

Eq. (4.27) translates to the fact that, either there exists a time step ¢, in the
planning window that is £f-close to T(eg) and for which (s(t;),u(t;)) € Rp, or

event e must be scheduled outside of the current planning window (either before the

91

beginning of the current planning window ¢y, or beyond the planning horizon ty,).

4.3.2 Guidance Heuristic for End in Activities

Consider an “End in state region Rg” activity, starting at event eg and ending at
event ep, and assume that the start event has already been executed (T'(es) < to).
Assume also that the end event has not been executed yet, and that the goal region Rg
is unreachable within the current execution horizon ¢,,. This means that the end in
activity is currently being executed, and that the plant’s state should be currently
evolving towards Rp. However, since Rp is unreachable within ¢,,, and e has not
yet been executed, the only linear constraint that is active in the DLP encoding
(Eq. (4.27)) is the last constraint T'(eg) > ty, + 5%, and none of the constraints
(s(tr),u(ty)) € Rp is active. As a result, the plant’s state trajectory is effectively
unconstrained (except by the forbidden regions in the state space): the plant is free to
“go in any direction”, as long as it stays outside of the forbidden regions. In particular,

there is absolutely no guarantee that the plant’s state is currently evolving towards

the goal region Rpg; it might be “going in the wrong direction”, away from Rpg.

Proposed Guidance Framework in the General Case

To solve the aforementioned issue, Sulu uses a guidance heuristic, in order to guide the
trajectory towards Rg. The heuristic is a function hg, : S — R that associates, with
any vector (s,u) € S, an estimate hg, (s, u) of the “distance” in S, that is “cost to go,”
from (s, u) to the goal region Rp. The value of this heuristic at (s(t,,), u(t,,)) is then
added to the DLP cost function (Eq. (4.28)); hence, Sulu favors partial trajectories

that end as “close” as possible to Rg.

Minimize : hg,(s(tn,), u(ts,)) (4.28)

However, for Eq. (4.28) to be a valid DLP cost function, hg, must be linear over
the whole state space S. This is an unacceptable limitation: in many applications

such as the multiple-UAV example, to be a helpful heuristic, hr, needs to take into

92

account the forbidden regions in S, in order to avoid designing trajectories that lead
the plant into local minima, for example, in the presence of non-convex forbidden
regions. As a result, hgr, can have a complex shape; in this case, it cannot be
appropriately linearized over the complete state space.

To relax this limitation, rather than only considering linear heuristics, we al-
low the heuristic to be piecewise-linear (Def. 4), and we use the same method as
in Section 4.2.2 to add hg, to the DLP cost function. Let S = {S; C S} be a fi-
nite underlying partition of hpg,, where we can assume that each .S; is a polyhedron
(see Section 4.2.1 for a justification of this assumption). Eq. (4.28) then becomes
Eq. (4.29), where (hg,)|s, is the restriction of hg, to S;, and h is a new DLP vari-

able. Note the similarity with Eq (4.26) in the way we encode piecewise-linearity.

Minimize : h

(s(tn,), ultn,)) € Si (4.29)

Subject to: \ N h=(hry)s (s(tn,), ultn,))

S;eS

As mentioned before, this guidance heuristic only needs to be applied when either
the end in activity is currently being executed, or is scheduled to start in the current
execution window (T'(es) < tp,), and to end beyond the planning horizon (T'(eg) >
tn,). Hence, we can modify Eq. (4.29) in order for the constraint to be only enforced
when these two conditions are verified (Eq. (4.30)). Note that in Eq. (4.30) we added
the constraint h > 0 in order to prevent the cost function from being unbounded
below, when T'(eg) < t,, and T(eg) > ty,. This implies that the guidance heuristic

may only take on non-negative values.

Min :

(4.30)

{ T(es) < tn, } { (8(tny), u(tn,)) € S; }
=y
AN T(eg) > tp, ses A h= (h‘RE)|Si(S(tnt)7 u(ty,))

A

/[

/ /
x%

N
N

Figure 4-5: Guidance heuristic for an end in activity involving a particular aircraft «;.

A possible intuitive interpretation of Eq. (4.30) is the following. One can think
of § as a discrete “cost map” that contains subgoals S;, for which the cost to go to
the final goal region Rp is known, and given by the linear guiding heuristic (hg,)s,-
If the end in activity is scheduled to start within the current planning horizon and
to end beyond (T'(es) < t,, AT (eg) > ty,), then Sulu must choose a subgoal \S; that

minimizes the remaining cost to go from (s(t,,), u(t,,)) € S; to the destination Rp.

Guidance Heuristic in the Multiple-UAV Fire-fighting Example

In the fire-fighting example, for an end in activity involving a specific aircraft o,
S is a partition of S in which each subset S; is a polyhedral cylinder orthogonal to
the x® /y® subspace, and whose base in the x% /y® subspace is a square centered
at a given position (z;”7,y;’) (Fig. 4-5). For each S;, (hp,)s, is then chosen to be
constant, and equal to an estimate of the time necessary to go from (z;7,4;”) to the
projection R% of the goal region R onto the x% /y® subspace. Similar to [10], we
compute (hg,)|s, for each ¢ by constructing a visibility graph based on the forbidden
regions in the 2% /y® subspace. This is illustrated in Fig. 4-6.

As suggested in Fig. 4-6, Eq. (4.30) can be simplified by reducing S to a subset
S C S that excludes all the regions S; for which the proposition (s(t,,), u(t,,)) € S; is

94

execution horizon

- ~
P d ~
12711 |10 74 6
v LN
/ b B
122111 |10 | 9 3 e

1!1 10 f~——“7""‘> 8 6 |

11

<
&Q
Fa-\" -~
) (7
"h
L)
N
[(e)
\‘\
»
\s I
\\
A
/
/
2
Pyl
m

13 N2 |11 |10 | 6 |75

12N 4110 -7

x%

Figure 4-6: Example of a guidance heuristic for a fire-fighting UAV.

guaranteed to be unsatisfiable. This is the case when S; is inside a forbidden region,
or when S; is unreachable within the current execution horizon. For instance, in
the multiple-UAV example, the maximum velocity constraints allow us to ignore the
regions that are not reachable by the UAVs within the execution horizon, since they
are too far away from the initial position s(ty). This allows us to only consider the
regions S; that are within a limited distance of s(t), hence, in our implementation,
S only contains about twenty subgoals.

We present in Chapter 5 how the plant model M can allow us to determine, in

the general case, when a region of the state space is unreachable.

Comparison with Previous Work [10]

Our guidance heuristic approach builds upon the guidance framework introduced
in [10]. However, our approach is generic, while the heuristic in [10] is domain-specific,
and does not extend to the general type of plants considered in this thesis. There
are two main differences between the two approaches. First, [10] computes the cost
to go starting from the planning horizon ty, rather than the execution horizon t,,
(Fig. 4-7). The reason we use the execution horizon is to lower the complexity of
Eq. (4.30): for a given size of the subgoals S;, reasoning with the execution horizon,

rather than the planning horizon, yields a lower number of subgoals in the reduced

95

-
- ~ -

\ gi

execution horizon ‘<xa"(tNI),ya’(tN')> < a ya">

~q
_
N
=y
/
v
=0

Figure 4-7: Guidance heuristic used in [10].

cost map S, since the plant can reach a larger part of the state space within ¢ ~, than
within ¢, < tn,.

Second, [10] uses a cost map that consists of subgoal points (x;’,y;”) for which
an estimate h; of the cost to go to the final goal Rg is known; these subgoals are
simply the corners of the forbidden regions in the visibility graph. The value of the
guidance heuristic for a given subgoal (7, ;) is then chosen equal to the sum of h;
and an estimate g; of the cost to go from (z% (ty,), y% (tn,)) to (z;7,4;”) (Fig. 4-7).
g; is computed simply by taking the straight-line Euclidian distance between the two
points. To make sure that this estimate is valid, they only allow their controller to
choose subgoals (z;7,y;”) that are “visible” from (x%(ty,),y% (ty,)); the concept of
visibility corresponds to the existence of a straight line from (z% (ty,), y* (tn,)) to
(x5, ;) that does not cross any forbidden region.

The validity of g; relies on the concept of visibility, and on the fact that, in the
case of a fixed-wing UAV, a straight line is effectively the shortest trajectory between
two points that is consistent with the dynamics of the aircraft. This assumption does
not hold in the general case: if the forbidden regions are no longer simply in the z/y
subspace, but include state variables such as velocities and/or accelerations, there is
no concept of visibility, and their method to compute g; falls short. More generally,

a straight-line trajectory might not be consistent with the dynamics of the plant, in

96

A
vx
S g S(Z‘N)
X€ = === ’
min
Ve T 7
(g
. 1 2
_min 7
X

Figure 4-8: Simple example showing a limitation of the approach used in [10].

which case the straight-line Euclidian distance might be a very poor heuristic. Our
approach relaxes this assumption, and is applicable in the general case, given that we
have access to a guidance heuristic for the plant.

Consider the example of a 1-D plant whose state vector is s = (z,v,), where
x is the position, and v, is the velocity. The input is the acceleration, which has
finite lower and upper bounds. Consider the forbidden region presented in Fig. 4-
8, corresponding to a segment [z7,xs] in which the plant is required to maintain

a minimum absolute velocity vj'".

The guidance heuristic approach in [10] would
consider the goal state sp “visible” from s(ty,), and the heuristic value gg assigned
to s would be equal to the Euclidian distance from s(ty,) to sg (in this case, hgy =0
since sp is the goal state). However, the straight-line trajectory from s(ty,) to sg is
inconsistent with the plant dynamics, since can only increase when v, is positive,
and decrease when v, is negative. The shortest feasible trajectory in that case would
be one that goes around the forbidden region. Our approach would build a cost map
of subgoal regions whose cost to go would be the value of the guidance heuristic,
computed, for instance, by running a shortest path algorithm on a discretization of
the state space (Fig. 4-9). This leads to a better guidance heuristic, which is able
to guide the plant around the forbidden region, rather than suggest to go straight

towards the goal state, which is infeasible.

97

A
vx
514|314
S 413 [2 [€ th)
32k |2y
min []
o >
X4 X X
vmin {
©

Figure 4-9: Our guidance heuristic correctly guides the plant around the forbidden
region.

In this chapter, we first presented our overall approach to solving Receding Hori-
zon HMEx, which consists of encoding the plant model and the qualitative state plan
as a mathematical, optimization problem, using a Disjunctive Linear Programming
formalism (Section 4.1). We motivated the use of DLP by the fact that it was suited
to encode the hybrid logic/optimization nature of the HMEx problem. We then pre-
sented in more detail how we use this formalism in order to encode the constraints in
the plant model and in the qualitative state plan, in the case of infinite horizon HMEx
(Section 4.2). We illustrated the encodings using the multiple-UAV fire-fighting ex-
ample introduced in Section 3.1, and the hybrid thermostat automaton presented in
Section 3.2.4. Finally, we showed how the encodings could be modified in order to
solve receding horizon HMEx (Section 4.3). In particular, we introduced a heuristic
that Sulu uses in order to guide the plant towards regions of the state space specified
by end in activities in the qualitative state plan, when these goal regions are not

reachable within the current planning window.

98

Chapter 5

Constraint Pruning Policies

In the preceding chapter, we saw that our receding horizon model-based executive,
Sulu, solves the HMEx problem by encoding it as a DLP, and iteratively solving it
over small planning windows. The ability of Sulu to solve the problem in real-time
is limited by the complexity of the DLP, in terms of the number of variables and the
number of constraints. In the second half of the previous chapter, we presented how,
by limiting the number of time steps /V; in the planning window, we could lower the
number of variables, since every time step ¢; introduces n 4+ m variables in the DLP,
corresponding to the n components of the state vector s(¢;) and the m components
of the input vector u(t;).

In this chapter, we describe a method to further lower the complexity of the DLP,
by lowering the number of constraints. This is done through the use of a set of novel

pruning policies that enable Sulu to prune constraints, without loss of correctness.

5.1 Overall Constraint Pruning Framework

In this section, we formally define a pruning policy as a function that returns whether

or not a constraint in the HMEx problem can be pruned (Def. 19).

Definition 19 A pruning policy is a function p : Cyyp: — {true,false} that,

for each constraint ¢ € Cyprge, returns true if ¢ can be pruned, and false if it cannot

99

be pruned. Cyyrgs 15 the set of HMEx constraints, where a HMFEx constraint is a
constraint introduced either by the plant model or the qualitative state plan (Chap. 3);
the list of all types of HMFEz constraints is recalled below:

1. A constraint imposed by the plant model M can be of the following three types:

(a) A constraint imposed by an forbidden region R € F, which constrains the
plant vector (s(t;), u(t;)) to remain outside of R for all time steps t; in the

planning window;,
(b) A constraint corresponding to a state equation s;(ty) = fi(s(tp_1), w(tp_1));

(¢) The constraint imposing an initial value to s(to).

2. A constraint imposed by the qualitative state plan P is of two types (one more

type of state plan constraints will be introduced in Section 5.3.1):

(a) A temporal constraint ¢ € C, specifying lower and upper bounds on the time

between two events in the qualitative state plan;

(b) A state constraint cg, associated with a given activity a € A. This last

category includes the guidance constraints introduced in Section 4.3.2.

As will be presented in Chapter 6, the pruning policy is called on all HMEx
constraints at the beginning of each iteration of the receding horizon HMEx algorithm,
in order to incrementally update the DLP. Consider a HMEx constraint ¢ € Cyrgs;
if the pruning policy returns p(c) = true, then ¢ can be pruned, which means that
its corresponding DLP encoding can be removed from the DLP (if it was in the
DLP at the previous iteration), or ignored (if it was not in the DLP at the previous
iteration). Similarly, if p(c) = false, then ¢ may influence the solution; therefore,
the DLP encoding for ¢ must be added to the DLP (if it was not in the DLP at
the previous iteration), or updated (if it was previously in the DLP, but it involves

parameters such as ty or ty,, whose values have changed since the previous iteration).

100

Alg. 1 Constraint pruning policy for the DLP constraint associated with a given
forbidden region Pg
if RNPs =0 then
return true
else

return false
end if

—_

5.2 Plant Model Constraint Pruning

As mentioned in Def. 19, some of the HMEx constraints are specified by the plant
model M, while others are introduced by the qualitative state plan. In this section,
we present pruning policies for the constraints imposed by the plant model: forbidden
region constraints (Section 5.2.1), state equation constraints (Section 5.2.2), and the

state initialization constraint (Section 5.2.3).

5.2.1 Forbidden Region Constraint Pruning
General Case

Recall that the plant model M defines forbidden regions in the state space S as
polyhedra of S (Eq. (4.5)). The corresponding DLP encoding for a given polyhedron
Ps € S was presented in Eq. (4.6), and is repeated in Eq. (5.1).

AV alis),um) = b (51)

k‘ZONt iil...nps

Eq. (5.1) can be pruned if Pg can be guaranteed to be unreachable from the
initial plant state s(tp), within the planning horizon ty,. That is, if the region R of
all states s reachable from s(ty) within ¢y, is disjoint from Pg (Alg. 1). R is formally
defined in Eq. (5.2) to (5.4).

Ro = {s(to)} (5.2)

101

Sk+1 = As;, + Bu,
VkE=0... Nt —]., Rk+1 = 4 Si+1 € R" N S € Rk (53)
AN YRe F <sk,uk> Q_f R

R= |J R« (5.4)

As shown in Eq. (5.3), Ri41 can be constructed as the set of states sy, that are
reachable in one time step from any state s; € Ry, using any input u; that does not
make (si, uy) violate any forbidden region R € F.

Consider the simple example of a plant whose state vector is s = (), and whose
input vector is u = (v,), where z and v, are linked by the state equation z(t;) =

min

x(ty—1)+At-v,(tg_1). F consists of two forbidden regions, imposing a lowerbound v

max

and an upper bound v}

on the velocity v,. If the initial state is z(to) = 0, then the
set of possible values for z(t; = to+At) is Ry = [At-0™™ At-v2*]. Tteratively, the set
of reachable states at time step to = t; + At from Ry is Ry = [2- At - 0™ 2. At - ylax],

Efficient techniques have been developed in order to compute R, such as in [8,

16, 22, 38, 40, 59]. In the following paragraphs, we describe how, for our fire-fighting

UAV example, we use an approximation of R, which can be computed easily.

UAV Example

Recall that, in the UAV example, the forbidden regions considered are the following
(Section 4.2.1):

1. No-fly-zones in the z/y subspace of each aircraft;

2. Regions of S in which the velocity of a given aircraft is lower than its minimum

allowed value;

3. Regions of S in which the velocity or the acceleration of a given aircraft is

greater than its maximum allowed value, and

102

Alg. 2 Constraint pruning policy for collision avoidance between aircraft «; and
no-fly-zone R € F
if dist((x®,y*)(to), R) > N - At -v3™ then
{forbidden region R is out of reach within N;;}
return true
else
return false

end if

—_

4. Unsafe regions of S in which two aircraft are too close to each other.

In this section, we illustrate the pruning policy in Alg. 1 on the forbidden regions
of Type 1 and Type 4. For these two types of forbidden regions, we use a fast, approx-
imate method to compute R: for a given aircraft «;, we approximate its reachability
set R by a 2-sphere R centered at (¢, y%)(t,) and of radius N - At - v, which
is simply the length of the longest straight-line trajectory that «; can travel within
the planning horizon. Note that, since this is an optimistic approximation (R C R),
it is a sound approximation: it will not lead us to prune forbidden regions that are

reachable within the current planning horizon.

No-fly-zone Avoidance Constraint Pruning: Recall that the DLP constraint
encoding no-fly-zone avoidance is presented in Eq. (4.14), in the simplified example
of a rectangular no-fly-zone. The corresponding pruning policy is presented in Alg. 2,
for a given aircraft «; and a given no-fly-zone R in the x® /y® subspace. Similar to
Alg. 1, the constraint can be pruned if R N R = 0; however, here R is the 2-sphere
centered at (x%,y%)(to) and of radius N, - At - v}™, hence RN R =0 is equivalent
to dist({(x*,y*)(to), R) > Ny - At - v3, where dist is the Euclidian distance in the

x% /y™ subspace.

Vehicle Collision Avoidance Constraints Pruning: Consider the DLP con-
straint encoding collision avoidance between two aircraft a; and o; (Eq. (4.18)). Ef-
fectively, the pruning policy for this constraint (Alg. 3) is a special case of the policy

for no-fly-zones presented in the previous paragraph; here, the no-fly-zone R that air-

103

Alg. 3 Constraint pruning policy for collision avoidance between aircraft o; and o

1 if [z, y2) (tg) — (2%, y*) (to) ||z, > Ni - At - (VY + Vmiax) + €% + €% then
2: return true

3: else

4: return false

5: end if

craft o; must avoid is the 2-sphere in the 2% /y® subspace, centered on aircraft «;, and
of radius €* 4 ¢% (where €% is the safety margin to be maintained around aircraft «;).

Hence, dist({z*,y™)(to), R) = [[(z*,y*)(to) = (&%, y*)(to) [2, — (€™ + €*).

5.2.2 State Equation Constraint Pruning

As introduced in Section 3.2.3, the dynamics of the plant are modeled by state equa-
tions, which predict the values of the plant variables at every time step t;, from their
values at time step t;_; and the values of the control inputs at time step ¢;_;. These
state equations are fundamentally necessary for Sulu to be able to design control
sequences for the plant, by planning into the future; for this reason, state equation
constraints are never pruned (the pruning policy always returns false).

As presented in Section 5.1, this means that the state equation constraints always
remain encoded in the DLP, and that they may have to be updated every time Sulu
shifts the planning window, if they depend on parameters whose values change when
the planning window changes (such as ¢y or ty,). This is the case, for instance, when

we remove the assumption that the state equations are time-invariant (Section 3.2.3).

5.2.3 State Initialization Constraint Pruning

Recall (Section 4.2.1) that, for the plant model to be able to properly predict the
behavior of the plant over time, the plant state vector s(¢) must be given an initial
value sy at the first time step ty in the planning window. As described in Sec-
tion 3.5.2, this initial value is computed by the state estimator, using the last control
sequence U = (u(t_,,),...,u(t_1)) previously sent to the plant, and using an esti-

mate of the state of the plant at the time ¢_,, when it starts executing that control

104

Alg. 4 Pruning policy for the state initialization constraint.
1: query the state estimator for the expected value sy of the plant state at time
step tg
2: return false

sequence U. The value of the initial plant state sy hence changes every time the
planning window changes; therefore, the DLP encoding for the state initialization
constraint (Eq. 4.13) must be updated at every iteration, when the corresponding
pruning policy is called. This policy is presented in Alg. 4. Note that, similar to the
state equation pruning policy (Section 5.2.2), the policy always returns false, since
the state initialization constraint is a fundamental constraint necessary for Sulu to
be able to plan into the future from a known initial position.

As described in Alg. 4, the policy queries the state estimator for a prediction sq of
the plant state at time step ty, when it has finished executing the control sequence U.
So is the value used to initialize the state variable in Eq. 4.13.

Note that the model used by state estimator in order to compute sy does not have
to be the same as the plant model used by the hybrid controller, introduced in Sec-
tion 3.2.3. In particular, it does not need to verify the piecewise-linearity assumption,
and it may use a more fine-grained time discretization, if any. The piecewise-linearity
assumption and the time discretization are only necessary to encode the model using
the DLP formalism. Here, the model used by the state estimator may be a better,
non-linear, continuous model of the plant dynamics. Sulu then uses this better model
to compensate for the approximations in the piecewise-linear model used to design

the control sequences.

5.3 Qualitative State Plan Constraint Pruning

Recall that a constraint mentioned in a qualitative state plan P can be either a
temporal constraint between two events, a remain in constraint, an end in constraint,
or a heuristic guidance constraint for a given end in activity. In this section, for each

type, we show that the problem of finding a pruning policy is equivalent to that of

105

e —>ey?

a@ (AT

Figure 5-1: Computation of the distance graph: each arc in the qualitative state
plan (a) is split into two arcs in the distance graph (b).

foreseeing if an event in the qualitative state plan could possibly be scheduled within
the current planning horizon. This is solved by computing bounds (7™ T™max) on
T(e), for every event e. Given the execution times of past events, these bounds are
computed from the bounds <AT<§‘E}>, AT@?@) on the distance between any pair of
events (e, ¢’), obtained using the method in [17]. This involves running an all-pairs
shortest path algorithm on the distance graph corresponding to the qualitative state

plan (Fig. 5-1), which can be done offline (Chapter 6, Alg. 11).

5.3.1 Temporal Constraint Pruning
Overall Approach

In this section, we describe a temporal constraint pruning policy that effectively
prunes any event in the qualitative state plan that is guaranteed to be scheduled
outside of the current planning window. Any temporal constraint involving such an
event is also pruned. This choice of policy can be motivated by the two following

arguments:

1. If an event is guaranteed to be scheduled before the beginning of the current
planning window £, this means that the event has already been executed. There

is no need to schedule that event anymore; hence, it can be pruned from the

DLP.

2. If an event is guaranteed to be scheduled beyond the current planning hori-
zon ty,, then we can defer the scheduling of that event to a later time, when it

is no longer guaranteed to be scheduled outside of the current planning window.

106

Figure 5-2: Example of an implied temporal constraint.

Hence, such an event can also be pruned from the DLP.

In some domains of applications, however, this pruning policy might not be de-
sirable. For instance, if the human operator needs to know in advance the intentions
of the autonomous system in order to schedule his or her own actions accordingly,
then it might be necessary for Sulu to design complete schedules for the whole quali-
tative state plan, rather than only for parts of the plan that may be scheduled within
the current planning window. In that case, the events and the temporal constraints
should not be pruned. Note that the complete schedules that would then be generated
would not be guaranteed to be unchanging, since Sulu might need to reschedule future
events in order to adapt to disturbances, and to account for the fact that, following
the receding horizon framework, state constraints beyond the planning horizon are
ignored.

Pruning all the temporal constraints that involve an event that is guaranteed to
be scheduled outside of the current planning window, however, can have three bad
consequences.

First, implied temporal constraints between two events that can be scheduled
within the current planning window might no longer be enforced. Implied tempo-
ral constraints are constraints that do not appear explicitly in the qualitative state
plan, but are a logical consequence of several explicit temporal constraints. This is

illustrated in Fig. 5-2. Consider the two temporal constraints e; — e3 and e; — ez,

107

[3,3] (>

Figure 5-3: Example of a state plan where the pruning policy in Alg. 5 entails infea-
sible schedules.

which are explicitly mentioned in the state plan. The implied constraint e; — es
follows from the two explicit constraints. Since event e3 is guaranteed to be sched-
uled beyond the planning horizon, the two explicit constraints are pruned. As a
result, events e; and ey are no longer linked by any temporal constraint; therefore,
the schedule designed by Sulu might violate the implied constraint.

Second, the schedule might violate temporal constraints between events that re-
main to be scheduled, and events that have already been executed. This is illustrated
in Fig. 5-3, where pruning the temporal constraint between the two events results in
the domain of T'(e3) being unbounded below; since e, is no longer linked to any past
event, it can be scheduled at any point in time, regardless of when e; was executed.

Third, when the objective is to minimize total plan execution time, we argued
previously (Section 4.1.3) that this objective could be encoded in the DLP by just
adding T'(ecnq) to the DLP cost function, where e.,q is the end event of the qualitative
state plan. This is no longer valid; if e.,s is guaranteed to be scheduled beyond
the planning window, then all temporal constraints on e.,q have been relaxed, and
minimizing 7(e.,q) does not have any effect on the time at which the other events
are scheduled.

To address the first two issues, instead of just pruning temporal constraints in-
volving events that are guaranteed to be scheduled outside of the current planning
window, we compile them out of the DLP. This involves explicitly encoding all tem-
poral constraints between any pair of events, instead of encoding only those that are
specified in the qualitative state plan. It also involves introducing new unary tempo-

ral constraints (different from the binary temporal constraints previously introduced),

108

Alg. 5 Pruning policy for the binary temporal constraint between events eg and eg
L1 if T3 <ty then

2: {eg has already been executed;}

3: return true

4: else if T"™ > ty, then

5. {eg is out of reach within the current horizon;}
6: return true

7. else if T7™ <ty then

8: {eg has already been executed;}

9: return true

10: else if T;"™ > ty, then

11: {eg is out of reach within the current horizon;}
12: return true

13: else

14: return false

15: end if

Figure 5-4: Ilustration of the different cases in Alg. 5 (shaded areas are time periods
outside of the current planning window [tg,ty,]) : a) eg has already been executed
(line 1); b) eg is out of reach within the current horizon (line 4); ¢) eg has already
been executed (line 7); d) eg is out of reach within the current horizon (line 10).

109

which specify absolute lower and upper bounds on the times at which events can be
scheduled. In the following subsections, we describe how this is done, as well as how
we address the third issue, when the objective function consists of minimizing total
plan execution time.

Note that the method we use in order to compile the irrelevant temporal con-
straints out of the DLP is very similar to previous work on dispatchable plans
(17, 49, 60, 61], introduced in Section 2.1. The method described in the following

paragraphs is analog to computing a dispatchable plan for the qualitative state plan.

Binary Temporal Constraint Pruning

As perviously introduced, a temporal constraint between a pair of events (eg,ep)
can be pruned if the time bounds on either event guarantee that the event will be
scheduled outside of the current planning window (Alg. 5, Fig. 5-4).

However, in order to avoid cases such as the one in Fig. 5-2, rather than apply-
ing this policy only to the explicit temporal constraints that are mentioned in the
qualitative state plan, we encode and apply the policy to all temporal constraints be-
tween any pair of events (e, ¢'), derived from the temporal bounds <AT<r;ier}>, ATRE)
computed by the method in [17]. This way, no implied temporal constraint is un-
intentionally ignored, since all temporal constraints between all pairs of events are

explicitly encoded in the DLP.

Unary Temporal Constraint Pruning (Alg. 6, Fig. 5-5)

As previously introduced, in order to properly compile out binary temporal con-
straints without allowing situations such as the one in Fig. 5-3, we introduce a new
HMEx constraint that enforces unary temporal constraints on every event e; the
DLP encoding is presented in Eq. (5.5), where the bounds T™" and T/ are the

ones introduced at the beginning of Section 5.3.

™™ < Te) < T (5.5)

110

Alg. 6 Pruning policy for the unary temporal constraint on an event e.
L if T < t; then
2: {e has already been executed;}
3: return true
4: else if T™" > ¢y, then
5. {e is out of reach within the current horizon;}
6: return true
7: else
8 return false
9: end if

Figure 5-5: Illustration of the different cases in Alg. 6: a) e has already been executed
(line 1); b) e is out of reach within the current horizon (line 4).

A unary temporal constraint on an event e can be pruned whenever e is guaranteed
to be scheduled before the beginning of the current planning window (line 1, Fig. 5-

5 a), or beyond the current planning horizon (line 4, Fig. 5-5 b).

Minimizing Total Plan Execution Time

This subsection only applies when the objective function consists of minimizing the
overall plan execution time. In Section 4.1.3, we argued that this objective could be
encoded in the DLP by just adding T'(eenq) to the DLP cost function, where e.,q is
the end event of the qualitative state plan. As previously mentioned, this approach
does not work if e.,q is pruned. To address this issue, rather than minimizing the
time 7T'(eenq) at which the end event is scheduled, we minimize the time 7'(e) at which
every event e is scheduled. This is encoded in the DLP by modifying the encoding for
unary temporal constraints (Eq. (5.5)); the new encoding is presented in Eq. (5.6).
The pruning policy remains the same (Alg. 6, Fig. 5-5).

111

Alg. 7 Pruning policy for a “Remain in state region Ry” activity starting at event eg
and ending at event eg

L if T <ty then

2: {activity is completed;}

3 return true

4: else if T <o then

5. {activity is being executed;}

6: return false

7: else if T™ > ty, then

8: {activity will start beyond ty,;}

9: return true
10: else if T7™ < {y, then
11: {activity will start within ¢y, ;}
12: return false
13: else if RN Ry = () then
14: {Ry is unreachable within ty,; postpone start event eg:}
15: T[GHTEN,BOUNDS(@S,tNt,Telga")
16: return true
17: else
18: return false
19: end if

a) , S

b) mti;ft.maininR
c) 55
d)

Figure 5-6: Illustration of the different cases in Alg. 7: a) The activity is completed
(line 1); b) The activity is being executed (line 4); ¢) The activity will start beyond
tn, (line 7); d) The activity will start within ¢y, (line 10).

112

Alg. 8 TIGHTEN _BOUN DS(e, Tinin, Tmax) routine to tighten the time bounds on
an event e
1 if 7m0 < Ty, then
2: {the new lower bound is tighter than the old one;}
Temin — Thoin
{propagate to other events:}
for all events ¢’ € £ do
T — max (750, Tmin 4 AT&%)
end for
end if
if T > Tl.x then
10: {the new upper bound is tighter than the old one;}
1 T T
12: {propagate to other events:}
13: for all events ¢ € £ do

M T e min (T, T 4 ATRE)
15: end for
16: end if
Minimize : T(e)

. (5.6)
Subject to: T™* < T(e) < Tmax

5.3.2 Remain in Constraint Pruning (Alg. 7 and 8)

Consider the state constraint cg on a “Remain in state region Ry” activity a,
between events eg and ep (Eq. (4.24)). If eg is guaranteed to be scheduled in the
past (Fig. 5-6a), that is, it has already occurred (line 1), then a has been completed
and cg can be pruned. Otherwise, if eg has already occurred (line 4, Fig. 5-6b), then
a is being executed and cg must not be pruned. Else, if a is guaranteed to start
beyond the planning horizon (line 7, Fig. 5-6¢), then ¢g can be pruned. Conversely,
if a is guaranteed to start within the planning horizon, (line 10, Fig. 5-6¢), then cg
must not be pruned.

Otherwise, the time bounds on T'(eg) and T'(eg) provide no guarantee, but we can
still use the plant model M to try to prune the constraint; if M guarantees that Ry
is unreachable within the planning horizon, then cg can be pruned (line 13; refer to

Eq. (5.2) to (5.4) for the definition of R). In that case, eg must be explicitly postponed

113

[2,4] [3,7]

@ [1,3] @

Figure 5-7: Temporal propagation of a change in a unary temporal constraint.

beyond the current planning horizon (line 15); otherwise, it could be scheduled within
the planning window, without the remain in constraint being enforced. Event eg is

postponed after ty, by calling the TIGHTEN_BOUN DS routine in Alg. 8.

This routine changes the temporal bounds on an event (if the new bounds are
tighter than the old ones), and propagates the changes to the bounds on the other
events. Fig. 5-7 illustrates this on an example. In this example, the upper time bound
on event e; is tightened from 4 to 3. By propagating this change to other events, we

are able to tighten the upper time bound on event e, from 7 to 6.

5.3.3 End in Constraint Pruning (Alg. 9)

Consider a constraint c¢g on an “End in state region Rg” activity ending at event ep
(Eq. (4.27)). If eg is guaranteed to be scheduled in the past, that is, it has already
occurred (Fig. 5-8a, line 1), then cg can be pruned. Otherwise, if the value of T,2*
guarantees that eg will be scheduled within the planning horizon (line 4, Fig. 5-8b),
then cg must not be pruned. Conversely, it can be pruned if 7T, e”?Ein guarantees that ep
will be scheduled beyond the planning horizon (line 7, Fig. 5-8c). Finally, cg can also
be pruned if the plant model guarantees that Rg is unreachable within the planning
horizon from the current plant state (line 10). Similar to Alg. 7, eg must then be

explicitly postponed.

114

Alg. 9 Pruning policy for an “End in state region Rg” activity ending at event eg
L if T <ty then

2: {eg has already occurred;}
3: return true
4: else if Ter{l;x <tpn, then
5. {eg will be scheduled within ty,;}
6: return false
7: else if T"™ > ¢y, then
8: {eg will be scheduled beyond ty,;}
9: return true
10: else if RN Rg = 0 then
11: {Rpg is unreachable within ¢y,; postpone end event eg:}
122 TIGHTEN _BOUNDS(ep, t,, T™™)
13: return true
14: else
15: return false
16: end if
a)
b)
c)

Figure 5-8: Ilustration of the different cases in Alg. 9: a) er has already occurred
(line 1); b) ep will be scheduled within ¢y, (line 4); ¢) e will be scheduled beyond ty,
(line 7).

115

Alg. 10 Pruning policy for the guidance constraint for an “End in state region Rg”
activity ending at event eg

L if T < t,, then

2: {eg will be scheduled within the horizon;}
3: return true

4: else if Te“;“ > t,, then

5. {es will be scheduled beyond the horizon;}
6: return true

7: else

8: return false

9: end if

b)
nt

Figure 5-9: Illustration of the different cases in Alg. 10: a) eg will be scheduled
within the horizon (line 1); b) eg will be scheduled beyond the horizon (line 4).

5.3.4 Guidance constraint pruning (Alg. 10)

In Section 4.3.2, we introduced a new HMEx constraint that uses a guidance heuris-
tic to guide the plant towards the goal state of end in activities. As mentioned in
Section 4.3.2; this guidance constraint is only necessary when the end event ep is
scheduled beyond the execution horizon ¢,,, and the start event eg is scheduled be-
fore t,,. Therefore, this HMEx constraint can be pruned when ep is guaranteed to
be scheduled before t,, (line 1), or when eg is guaranteed to be scheduled after ¢,

(line 4).

In this chapter, we presented the set of pruning polices used by Sulu in order
to simplify the DLP, by pruning constraints that are irrelevant since they refer to
parts of the state space that are unreachable within the current planning horizon,
or parts of the qualitative state plan that can be guaranteed not to be scheduled

within the current planning window. We first presented the pruning policies for

116

the constraints imposed by the plant model (Section 5.2). Pruning such constraints
involves computing a reachability set for the plant, in order to decide whether or
not a given forbidden region in the plant state space is reachable within the current
planning horizon. We then presented our pruning policies for the temporal constraints
and the state constraints imposed by the qualitative state plan (Section 5.3). These
policies involve computing bounds on the times at which events in the qualitative
state plan can be scheduled, in order to predict whether or not these events will be
scheduled within the current planning window. In the following chapter, we show

how the use of these policies enables Sulu to run in real time.

117

118

Chapter 6

Implementation and Performance

Analysis

In this chapter, we present in more detail the Hybrid Model-based Execution (HMEXx)
algorithm (Section 6.1), and we demonstrate it (Section 6.2) by going through the
simple multi-UAV fire-fighting example from Section 3.1. We then provide a tech-
nical description of our implementation, and of the real-time, hardware-in-the-loop
testbed that we use to demonstrate our executive (Section 6.3). We finally present
experimental results obtained with this testbed and an analysis of the performance

of our model-based executive, Sulu, on a more complex test case (Section 6.4).

6.1 Pseudocode for Sulu

This section presents the pseudocode for the hybrid model-based executive. The
executive includes offline and online components, described, respectively, in the next

two subsections.

6.1.1 Offline Algorithm (Alg. 11)

The first part of the hybrid model-based executive algorithm (Alg. 11) is executed
offline. First, the lower and upper bounds (AT™

@3) and AT&%) on the time between

119

Alg. 11 Offline Algorithm

1: {compute the explicit time bounds on all pairs of events:}
2: for all pairs of events (e, e’) do
3: {compute shortest paths within distance graph:}
4 AT{;E}) — —dist(€,e)
5 AT « dist(e, €)
6: end for

7. {infer absolute time bounds on all events: }
8: for all events e do

9

Temin - TO + ATmin

: (estartve>
10: I Ty + AT(rg:;m@)
11: end for
12: tg <« Ty

13: {“freeze” start event to time Tj:}
14: T[GHTEN,BOUNDS(eStaTt7 To, T())

events e and ¢’ are computed, for every pair of events (e, ¢’), by running a shortest
path algorithm on the distance graph introduced in Section 5.3 (lines 1 to 6). These
bounds are then used to compute the absolute time bounds 7™ and T™** on every
event e, given a start time 7y for the execution of the qualitative state plan (lines
7 to 11). Recall (Section 5.3) that these absolute time bounds are used by the
constraint pruning policies, to identify the portion of the plan that is relevant to
each planning horizon.

Finally, we initialize receding horizon HMEx, by fixing the time ¢, of the beginning
of the planning window to 7y (line 12). Ty corresponds to the time at which the
start event ey, of the plan is required to be scheduled; this is enforced by calling
the TIGHTEN _BOUN DS routine (Alg. 8) to set the time bounds on e,y to T
(line 14). Finally, at this point, the main loop of the online algorithm (Alg. 12) is
ready to be started.

6.1.2 Online Receding Horizon HMEx Algorithm (Alg. 12)

The online component of the receding horizon HMEx algorithm is presented in Alg. 12.
Following the receding horizon planning and execution framework, at each iteration

of the loop, the algorithm reasons over a short planning window [to, fx,], which is

120

shifted by n; - At at the end of each iteration (line 32). The algorithm terminates
as soon as the end event e.,q of the qualitative state plan is scheduled for execution
during the next iteration (line 33).

The consecutive steps, performed during each receding horizon control cycle, are
similar to the three main steps introduced in Fig. 3-9. They differ in that the first step,
involving encoding the HMEx problem as a DLP, is split into two steps (Steps 1 & 4).

(Step 1) Encoding HMEx as a DLP (lines 3 to 11): As introduced in Sec-
tion 5.1, the algorithm calls the pruning policy on every HMEx constraint in Cyps gy,
and updates the DLP accordingly. When a constraint can be pruned (line 6), then it
is removed from the DLP (if it was in the DLP at the previous iteration), or simply
ignored (if it was not in the DLP before). When it cannot be pruned (line 9), it is
added to the DLP (if it was not in the DLP before), or updated (if it was already in

the DLP, but it involves parameters whose values changed, such as ¢ or ty,).

(Step 2) Solving the DLP (lines 13 to 18): The algorithm calls the DLP solver
to solve the DLP. Since the algorithm must run in real time (each iteration must last
no longer than n, - At), the solution process is interrupted after the allocated time for
solving the DLP has elapsed, and the solution retained is the best solution found thus
far. Note that this solution might be sub-optimal, in the event that the solver did
not have enough time to search through the complete feasible set. In the case that
no solution has been found (line 17), the algorithm aborts. This happens when the
qualitative state plan is simply infeasible with respect to the plant model, or when
N; was chosen too high, and as a result, the algorithm is unable to run in real time,

due to the complexity of the DLP. This is discussed in more detail in Section 6.4.

(Step 3) Extracting the control sequence (line 20): This step simply consists
of extracting the partial control sequence U = (u(ty), ..., u(t,,—1)) from the solution
found for the DLP. Recall that the u(;) are part of the decision variables of the DLP
(Eq. (4.4)). This control sequence U corresponds to the control inputs u for the first

n; steps in the current planning window, that is, up to the execution horizon.

121

Alg. 12 Online Receding Horizon HMEx Algorithm

1: repeat

2: {(Step 1) Encode HMEx as a DLP:}

3: for all HMEx constraints ¢ € Cyyrg, do
4: if p(c) = true then

5: {c can be pruned:}

6: remove ¢ from DLP / ignore ¢

7: else

8: {¢ cannot be pruned:}

9: add ¢ to DLP / update ¢ in DLP

10: end if

11: end for

12: {(Step 2) Solve the DLP:}

13: {solve under limited computation time to make sure it runs in real-time:}
14: solve DLP for (u(top),...,u(t,,)) and T

15: if no solution found then

16: {the state plan is infeasible;}

17: abort

18: end if

19: {(Step 3) Extract the control sequence: }
20 U« (u(ty),...,u(tn,-1))

21: {(Step 4) Prepare for next iteration:}

22: for all events e € £ do

23: if to <T'(e) < t,,, then

24: {e has been scheduled within the execution window; “freeze” event:}
25: TIGHTEN_BOUNDS(e,T(e), T(e))
26: else if T'(e) > t,, then

27: {e has been scheduled beyond the execution horizon; postpone event:}
28: TIGHTEN_BOUNDS e, t,,,, T™)
29: end if
30: end for
31: {shift the planning window by n, - At:}
32: g« to+mng - At

33: until T'(eqnq) < to {loop until e.,q is scheduled in the past}

122

[0,20]
>CStart in [a; & a, at base]

Remain in [, at fire]
[5,8]

[12,0)

End in [o, at fire]

End in [o, at fire]

[6,90)

Remain in [, at fire]

Figure 6-1: Qualitative state plan in the fire-fighting example.

(Step 4) Preparing for next iteration (lines 22 to 30): This step involves
updating the time bounds on all the events in the qualitative state plan, to make sure

that:

1. Events e that have just been scheduled within the current execution window
are “frozen” (7T'(e) is frozen to its current value), since they are about to be

executed during the following iteration, and their execution time may no longer

be modified (line 25); and

2. Events that have been scheduled beyond the execution horizon are postponed
(line 28), in order to enforce that they do not get scheduled before ¢y, at the

next iteration.

This is accomplished by calling the routine TIGHTEN _BOUNDS (Alg. 8).

6.2 Step-by-step Algorithm Demonstration

In this section, we demonstrate the receding horizon HMEx algorithm, step by step,
using the fire-fighting example introduced in Section 3.1. This simplified scenario
involves two UAVs, cooperating to extinguish a fire; the map of the terrain and the
qualitative state plan for this mission have been reported in Fig. 6-2 & 6-1. Alg. 11 is
first run once to initialize the planner, and Alg. 12 is then run several times iteratively,
shifting the horizon each time until the plan is completed, as presented in the following

paragraphs.

123

Table 6.1: Lower and upper bounds [AT{?Z}), AT@‘?@] on the time between any pair
of events (e, ') in the qualitative state plan in Fig. 6-1.

e\e e € es €4 es
e1 [0, 0] 6,13] [11,18] [12,18] [14,20]
es | [=13,—6] [0,0] 5.8 [5,12] [7,14]
es | [—18,—-11] [-8,—=5] 0, 0] 0,7] 2,9]
es | [—18,-12] [-12,—-5] [-7,0] 0, 0] 2, 3]
es | [—20,-14] [-14,-7] [-9,-2] [-3,-2] [0, 0]

Base 1

Base 2

Figure 6-2: Map of the terrain for the fire-fighting example.

6.2.1 Initialization

Initialization is performed by running Alg. 11. First, the table of values for AT

(e1,e2)
and AT (Table 6.1) is obtained, by computing the shortest paths through the
distance graph, corresponding to the qualitative state plan (lines 1 to 6). The absolute
time bounds, 7™ and 7T/ for each event e are then inferred from the provided
execution start time, T'(e;) = Ty = 0 (lines 7 to 11). Next, the beginning of the first
planning window is set to ¢, = Tp (line 12). Finally, the start event e; is “frozen”
to T'(e;) = Tp (line 14) in order to enforce that it always be scheduled at time
T(e1) = Ty in the following iterations. The TIGHTEN _BOUN DS routine (Alg. 8)

then propagates the change to the bounds on the other events. The resulting new

bounds are presented in Fig. 6-3 a).

124

0 5 10 15 20 25T
N T T T N Y T R A A
e e, |1
+1 I — le,
I —e— l
I | €y |
|
I e a)
Iel |62 es I
¢— !
|
I e I |
e e 4 e 2
1 2 5
| | :
|

Figure 6-3: “Snapshots” of the schedule for the qualitative state plan in Fig. 3-5, at
different steps in the algorithm execution: a) First iteration (¢, = Ty = 0), Step 3
(line 20); b) Second iteration (tg = Ty + ny - At = 10), Step 3 (line 20); ¢) End of
second iteration (tg = Ty + 2n, - At = 20, line 33). The bold dots represent the values
of T'(e) for each event e, and the segments represent the bounds [T, T™*| on T'(e).

6.2.2 First iteration (ty = Ty = 0)

First, the pruning policy is run on every HMEx constraint (lines 3 to 11), in order
to determine which constraints should be encoded in the DLP, and which constraints
can be pruned. For instance, the time bounds in Fig. 6-3 a) guarantee that ey will
be scheduled within the planning horizon; this fact is used by the pruning policy in
Alg. 10, to prune the heuristic constraint for activity “End in [y at fire]” (Alg. 10,
line 1). The same fact is used by the pruning policy in Alg. 9, to infer that the end
in state constraint, imposing aircraft a; to be at the fire at event ey, must not be
pruned (Alg. 9, line 1).

Next, the resulting DLP is solved (Step 2, lines 13 to 18), and the new control
sequence U is extracted from the solution found to the DLP (Step 3, line 20). The
corresponding schedule is presented in Fig. 6-3 a). Note that, although the bounds
on T'(e) inferred from the temporal constraints in the qualitative state plan allowed

event ey to be scheduled as early as T'(e3) = 4, it was scheduled at time T'(e3) = 8,

125

Base 1

Figure 6-4: Trajectories computed at the first iteration (in bold: up to t,,; in light:
between t,, and ty,)

which is the earliest time that aircraft a; could get to the fire (Fig. 6-4), given the
constraint on its maximum allowed velocity. As a consequence, event es was scheduled
at time T'(e3) = 13, in order to satisfy the temporal constraint specifying that e3 must
be scheduled no earlier than 5 time units after e;. Fig. 6-4 also shows that aircraft as
could not get to the fire within the current planning horizon; following the encoding in
Eq. (4.27), event e, was, hence, postponed to ¢y, + % = 15.5, with At = 1 time unit.
The earliest time that the end event e5 could be scheduled was then T'(e5) = 17.5,
according to the temporal constraint, specifying that e5 may not be scheduled earlier

than 1 time unit after ey4.

Finally (Step 4, lines 22 to 30), the algorithm prepares for the next iteration, by
tightening the bounds on any event that can be tightened. In our example, event e,
has been scheduled within the current execution window; it is, hence, frozen to its
current scheduled time of T'(e3) = 8 (line 25). The routine TIGHTEN_BOUNDS
then propagates this to the other events; the resulting new bounds are illustrated in

Fig. 6-3 b).

126

6.2.3 Second iteration (¢, = Ty + n; - At = 10)

As argued in Section 3.5.1, the receding horizon framework that we use to solve the
HMEx problem allows Sulu to adapt to disturbances and unforeseen events. In this
section, we illustrate this capability by assuming that, from the first to the second
iteration, new updated information about the fire has been gathered, for instance,
from analysis of satellite imagery, and that the fire region turns out to be narrower
than first expected (Fig. 6-5). This information is used to update the qualitative state
plan, by updating the state constraints on the activities mentioning the fire. Note
that the trajectories, initially designed at the previous iteration (Fig. 6-4), would no
longer satisfy the qualitative state plan, since they would lead aircraft o to remain
in the fire region for less than 5 time units. Hence, while the vehicles are following
the trajectories uploaded at the end of the previous iteration, up to the execution
horizon t,, only, Sulu needs to design new trajectories that start from ¢,,, and take

into account this change in the plan.

Following Alg. 12, the DLP is first updated (Step 1, lines 3 to 11), by pruning the
HMEx constraints that are no longer necessary, and by adding the constraints that
can no longer be pruned. For instance, the constraint that imposes aircraft o to be
at the fire at event es is pruned and removed from the DLP, since e; has already been

executed (Alg. 9, line 1).

The algorithm then solves the updated DLP (Step 2, lines 13 to 18), and the
new control sequence U is extracted from the solution found to the DLP (Step 3,
line 20). The corresponding trajectories are illustrated in Fig. 6-5. Note that they
are different from the ones initially computed at the previous iteration, due to the
change in the shape of the fire region. The new trajectory for aircraft a; now satisfies
the qualitative state plan, since a; remains in the fire region for 5 time units, as

specified by the temporal constraint on the “Remain in [at fire]” activity.

The schedule corresponding to these new trajectories is presented in Fig. 6-3 b).
Event e3 was scheduled at time T'(e3g) = 13, similar to the previous iteration, contrary

to event ey, which was scheduled at time T'(ey) = 17. This is later than the earliest

127

Figure 6-5: Trajectories computed at the second iteration (in bold: up to t,,; in light:
between t,, and ty,)

time T e“;‘m = 13 allowed by the temporal constraints in the qualitative state plan,
since the upper bound on as’s velocity prevented it from reaching the fire earlier.
Event e; was delayed accordingly. Note that events e; and e; were not scheduled
at all: since they have already been executed, their time variables, T'(e;) and T'(es),
have been pruned from the DLP, using the pruning policy in Alg. 6.

The time bounds on events are then tightened, when possible, following the
method in Step 4 (lines 22 to 30). In this case, events e3, e4 and e5 have all been
scheduled within the current execution horizon, so they are “frozen” to their current
respective times (line 25). The resulting, new bounds are presented in Fig. 6-3 c).
The planning window is then shifted by n;- At (line 32), and the algorithm terminates,
since the end event e; is now guaranteed to be scheduled before ty = Ty+2-n;- At = 20

(line 33).

6.3 Implementation on a UAV Testbed

Sulu has been implemented in C++, using the commercial software llog CPLEX |2]
to solve the DLPs. Note that, in order to solve a DLP, CPLEX first reformulates it

128

hUDP Networkﬁ
=
{ [

M

————Actuator Data-———»| (=]
i ! | == Flight Gear
P“_:CO_IO | CANBus | ‘ Simulator — and Operator
Avionics i | software Interface
~@——Sensor Data————— n ’HM
T - 01— -
>~ N~

Simulator PC Visualization PC

N

i , Piccolo Ground

Station

Serial

——
=1

Figure 6-6: Architecture of the CloudCap testbed. This picture was taken from [15]

into a Binary Integer Program (BIP), and then uses traditional branch-and-bound
techniques to solve the BIP. Current work [34, 42, 43] has showed that one can use
more efficient, conflict-directed techniques to solve the DLP, by solving it directly in
order to exploit its structure, rather than first convert it into a BIP. However, the DLP
solver algorithm introduced in [42] can currently only handle DLPs in Conjunctive
Normal Form (Def. 17), and, even though algorithms exist in order to reduce any DLP
in propositional form (Def. 18) into CNF, this reduction is worst-case exponential in
time and space. In practive, tests have showed that our computer would run out of
memory when it tried to perform this reformulation on DLPs generated by the test
case presented in Section 6.4.1. For this reason, we have been using CPLEX, until

the DLP solver in [42] can handle DLPs in general propositional form.

Our receding horizon HMEx algorithm has been tested on a 1.7GHz computer
with 512MB RAM, using a hardware-in-the-loop testbed that consists of two Cloud-

Cap Piccolo Plus autopilots (Fig. 6-6, left) [1]. Each autopilot is a complete integrated

129

avionics system, including GPS and a flight sensor interface. Typically, an autopilot
would be mounted onboard a model aircraft, and provide low-level control by taking
in sensor measurements (static pressure, dynamic pressure, inertial data...) and send-
ing control inputs to the onboard actuators. The operator communicates with the
autopilot via radio wavelength, through a Piccolo ground station (Fig. 6-6, bottom).
The ground station is connected via a serial port to a PC running the operator inter-
face (Fig. 6-6, right), which enables the operator to monitor the state of the aircraft,

and to send lists of waypoints to the autopilots.

In order to test Sulu, rather than mount the autopilots on real model aircrafts,
the autopilots interact with a simulator through a CAN bus (Fig. 6-6, center). The
simulator takes in control inputs from the autopilots, applies them to an aircraft
dynamics model, and simulates in real time the sensor measurements needed by the
autopilots. The model used is a very realistic model of the dynamics of the aircraft;
hence, this real-time, hardware-in-the-loop setup provides a simulation testbed that
is only one step away from real flight testing.

Furthermore, as previously mentioned, the autopilots take in series of waypoints,
rather than low-level control inputs. This enables us to abstract away the problem
of low-level control of the aircraft, and to use the simple plant model introduced in
Section 3.2.1. Sulu designs trajectories in the plant’s state space, which are then
converted into sequences of close x/y waypoints. The sequences are sent through
a TCP/IP interface to the operator interface, which relays them to the autopilots.
The operator interface also relays information about the state of the aircraft to the

executive through the same interface.

6.4 Model-based Executive Performance Analysis

on a More Complex Test Case

In this section, we first present a multiple-UAV fire-fighting scenario (Section 6.4.1)

that is more complex than the one previously presented (Section 3.1). This sce-

130

Fuel 2 .‘

Water 1

Fire 1

Fuel 1 .“
A (J
Fire 2

Water 2

Figure 6-7: Map of the environment in the multi-UAV fire-fighting scenario.

nario is the test case that we then use to discuss the real-time performance of Sulu

(Section 6.4.2).

6.4.1 Description of the Test Case

In Section 3.1, we introduced a simple multiple-UAV fire-fighting example that we
used to illustrate the concepts and algorithms presented in this thesis. In this section,
we introduce a similar, more complex example, used in Section 6.4 to assess the
performance of Sulu. This scenario involves two aircraft, executing a qualitative
state plan consisting of 26 activities, for a total mission duration of about 1,300 sec.
As shown in Fig. 6-7, the environment consists of two no-fly-zones, and a set of
goal waypoints that the aircrafts must visit in a specific order, according to the
qualitative state plan. The following is a short, natural language description of the

plan, represented in Fig. 6-8.

131

[gadzel
urpug

[ANT+ 081

(12004 7ze)
uuRway

[ANI+0r]

[ANI+‘0z1] log “ogl .
[ANT+ 0l

[NENIE)
urpug

[oseg 1v]

[crong ™ re]
ug

i [REN]

uueIay

- [ANT+ 091

. [‘e log ‘og]
+ + +

[ANT+ 0l [ANT+ 0z1] [o¢ 0] [ANT+ 081

([ony 123)
Izong ge]
[N

[ziong " ge]
uppug

[og o€l

[aNT+0L]

TaNT+ 0] [zaunze]
ugpug

[ANI+ 0]

»

5 +
LINT0] Lo “ogl [ANI+0L1]
[ANT+ ‘0l

[z 1e]

urpug

[LINT+ 091 [og *0€]

[dNT+ 081

[aNT+ 03]

looos1 0l

1S.

Qualitative state plan used for performance analys

Figure 6-8

132

The two aircraft ay and as start at a common Base. Aircraft aq is a
water tanker; its mission is to first fill up its water tank at Water 2 and
drop it on Fire 2. It must then refill its water tank at Water 1, and drop
water on Fire 1. Finally, it must go back to the Base, refilling its fuel tank
along the way at Fuel 2. Aircraft as is a reconnaissance UAV; its mission
s to take a picture of each fire, before and after aircraft aq drops water
on it. It must start with Fire 2 and then Fire 1, refilling its fuel tank
between the two rounds at Fuel 2. Fach time they perform an action at
a specific waypoint (e.g. refilling a tank, or taking a picture), the aircraft
must remain in the vicinity of the corresponding waypoint for 30 sec. The

overall mission duration must be lower than 18,000 sec.

For this test case, the objective function corresponds to minimizing total plan

execution time.

6.4.2 Performance Analysis

Fig. 6-9 and 6-10 present an analysis of the performance of Sulu on the test case
introduced in Section 6.4. These results show runtimes for a single iteration of the
receding horizon HMEx algorithm, which were obtained by averaging runtimes over
the whole plan execution, and over 5 different runs with random initial conditions.
At each iteration, the computation was cut short if and when it passed 200 sec, and
we retained the best solution to the DLP found thus far.

In both figures, the x axis corresponds to the length of the execution horizon,
ng - At, in seconds. For these results, we maintained a planning buffer of ty, —t,,, =
10 sec. The y axis corresponds to the average time in seconds required by CPLEX
to solve the DLP at each iteration. As shown in Fig. 6-9, the use of pruning policies
entails a significant gain in performance. Note that these results were obtained by
disabling the Presolve function in CPLEX, which also internally prunes some of the
constraints in order to simplify the DLP.

Fig. 6-10 presents an analysis of Sulu’s capability to run in real time. The dotted

133

35 w w w w w w w “L

30l —8— With constraint pruning -7]
= © = Without constraint pruning -

Average DLP solving time (in sec)

5 | | | |
6 6.5 7 1.5 8 8.5 9 9.5 10

Length of execution horizon (in sec)

Figure 6-9: Performance gain by constraint pruning.

line is the line y = x, corresponding to the real-time threshold. It shows that below
the value x ~ 7.3s, Sulu is able to compute optimal control sequences in real time,
since the average DLP solving time is below the length of the execution horizon. For
longer horizons, corresponding to values of x above 7.3s, CPLEX is unable to find
optimal solutions to the DLPs before Sulu has to replan, that is, the solving time is
greater than the execution horizon. Note that in this case, since CPLEX performs
branch and bound, which runs as an anytime algorithm, we can still interrupt it
and use the best solution found thus far, in order to generate sub-optimal control
sequences.

Also note that the number of the disjunctions in the DLP grows linearly with
the length of the planning horizon; therefore, the complexity of the DLP is worst-
case exponential in the length of the horizon. In Fig. 6-10, however, the relationship
appears to be linear. This can be explained by the fact that the DLP is very sparse,

since no disjunct in the DLP involves more than three or four variables.

In this chapter, we first presented in detail the pseudocode for our receding horizon,

hybrid, model-based executive (Section 6.1). We showed that the algorithm could be

134

14

—8— Average DLP solving time (in sec
12} | = = = Real—time threshold T

2 | | | |
5 6 7 8 9 10

Length of execution horizon (in sec)

Figure 6-10: Performance of Sulu.

decomposed into an initial offline phase, during which we compute the absolute time
bounds on events that are needed by the pruning policies, and an online phase, that
generates control sequences for the plant in real-time, over shifting planning windows.
In Section 6.2, we then demonstrated our algorithm step by step, on the simple
multiple-UAV fire-fighting introduced in Section 3.1. We showed that our receding
horizon approach enabled Sulu to adapt to disturbances, by replanning regularly,
taking into account the latest knowledge about the state of the plant, and possible
unforeseen events. We then briefly described how we implemented Sulu and tested
it using a real-time, hardware-in-the-loop UAV testbed (Section 6.3). Finally, in
Section 6.4, we presented some real-time performance analysis, which showed that

our executive was able to run in real-time, on a more complex UAV scenario.

135

136

Chapter 7

Conclusion and Future Work

In this chapter, we propose areas of future work, in order to improve and extend the
capabilities of the HMEx algorithm in general (Section 7.1.1), and, more specifically,
the constraint pruning algorithms, presented in Chapter 5 (Section 7.1.2). We also
discuss how Sulu can be integrated with related work in model-based programming
and contingent, temporal plan execution (Section 7.1.3), in order to enable higher-
level coordination and control of cooperative systems. Finally, we conclude this thesis
by summarizing the capabilities and achievements that we have presented in previous

chapters (Section 7.2).

7.1 Future Work

7.1.1 Improvements and Extensions of the HMEx Algorithm

In this section, we describe improvements that could be made to our HMEx algorithm.
First, we describe how it could be extended to handle probabilistic state estimates
from the state estimator; we then present possible extensions with respect to han-
dling uncertainty and uncontrollable events in the qualitative state plan. Finally, we
show how the algorithm could be distributed, in order to be deployed on plants with
multiple subplants, such as a team of UAVs.

137

Probabilistic Control Sequence Generation

As mentioned in Section 3.4.2, in this thesis, we abstracted away the state estima-
tion problem, by assuming that the hybrid controller had a unique, non-probabilistic
knowledge of the state of the plant at all times. In practice, this means that the state
estimator outputs the most likely state that is consistent with the plant model, the
observations from the plant, and the control sequences previously sent to the plant.
The hybrid controller then assumes that this most likely state is the true state, and
designs control sequences that start from this initial state.

This approach is not always applicable, since the maximum likelihood assumption
does not always hold. For instance, consider the case where the state estimator
infers from the observations that the plant may be in only two possible states, with
probabilities 51% and 49%, respectively. In that case, Sulu would assume that the
plant is in the first state. However, there is a high probability that it is in the
second state, and that the control sequence generated by Sulu, based on the wrong
assumption, will drive the plant into a forbidden region of the state space. Hence,
Sulu is not robust to state estimation errors.

In order to make it more robust, future work could remove the maximum likelihood
assumption, by allowing the hybrid controller to take in a belief state, consisting of
a probability distribution over the plant’s state space. Given such a belief state,
computed by the state estimator, the function of the hybrid controller would then
be to generate control sequences that are guaranteed to satisfy the plant model and
to complete the qualitative state plan, with some given probability «. Alternatively,
it could also design control sequences that minimize the probability of failure, either
due to “collision” with a forbidden region of the state space, or due to the inability

to complete the qualitative state plan.

Qualitative State Plans with Uncertainty

Another assumption we have made in this thesis is that Sulu is free to choose a

schedule for the qualitative state plan, as long as it satisfies the plan’s temporal

138

constraints and is consistent with the control sequence. In other words, we have
assumed that all events in the qualitative state plan are controllable, since Sulu is
free to choose the time at which they are executed. In some applications, however, the
model-based executive might not have full control over one or more events, because
the time at which they are executed is given by nature, or controlled by another
system in the environment. For instance, in the multiple-UAV fire-fighting example,
one event in the qualitative state plan might be required to be synchronized perfectly
with an external event over which the UAVs have no control, such as the arrival of a
ground support unit. Alternatively, the event could correspond to the end event of
an activity whose duration is not exactly known in advance. For instance, the exact
time needed by a UAV to refuel might only be known within certain time bounds.

Previous work on simple temporal networks with uncertainty (STNUs) have tack-
led the problem of providing guarantees on the existence of a temporally consis-
tent schedule for the plan, regardless of the outcome of the uncontrollable events
[48, 50, 58, 60, 61]. For instance, they define the concepts of strong controllability
and dynamic controllability. An STNU is strongly controllable if one can compute,
beforehand, a schedule for all the controllable events, such that, for all possible execu-
tion times for the uncontrollable events, the complete schedule is always temporally
consistent. Similarly, an STNU is dynamically controllable if one can compute, on
the fly, a schedule for the controllable events, knowing the execution times of past
uncontrollable events, such as the overall schedule is temporally consistent.

Future work could look into applying these concepts to Sulu, in order to allow it

to reason on qualitative state plans with temporal uncertainty.

Distributed HMEx Algorithm

The algorithm described in this thesis is fully centralized; this means that it must be
executed on a single processor, which has control over the whole plant. In the case of
a plant that consists of multiple vehicles, for instance, multiple UAVs coordinating
to extinguish fires, this fully centralized architecture might not be applicable, due to

communication limitations: all aircraft might not be able to communicate with a cen-

139

tral processor at all times, and communication latency might prevent this centralized
architecture from meeting real-time requirements. Furthermore, this approach does
not scale well with the number of UAVs, since the computational power needed to

run the algorithm might become too high for a single processor.

In this case, it becomes necessary to distribute the algorithm, so that it can run on
different processors, for instance at different ground stations, or even onboard each of
the vehicles. The main challenge in order to distribute the algorithm is to be able to
split the receding horizon HMEx problem into several, loosely coupled subproblems.
The state equations in the plant model could easily be decoupled across different
vehicles, assuming that the state equation for a state variable related to a given
aircraft does not depend on state variables related to different aircraft. Forbidden
regions pertaining to a subspace of the state space corresponding to a given vehicle
can also be easily decoupled. Coupling is introduced by state equations or forbidden
regions involving state variables corresponding to different vehicles. The qualitative
state plan can also introduce coupling between HMEx subproblems, either through
state constraints that involve state variables corresponding to different vehicles, or
through the temporal constraints in the plan, which specify synchronization between

the aircraft.

Previous work has been done on distributed branch-and-bound algorithms, in
order to solve MILPs in a distributed fashion, on parallel processors [47]. Such dis-
tributed algorithms, however, usually heavily rely on the fact that all processors can
communicate with each other, and that communication is almost instantaneous, so
that the capability of the algorithm to run in real time is not threatened by commu-

nication delays.

Previous work has tackled the problem of decoupling STNs for parallel scheduling
and execution, under communication limitations [58]. Note, however, that this work
only dealt with STNs, rather than with qualitative state plans. For this reason,
this work only applies when the coupling constraints in the qualitative state plan are
temporal constraints. Under this assumption, [58] decouples STNs using a hierarchical

reformulation and decoupling algorithm, which identifies a set of group plans that

140

describe the desired behavior of a set of sub-plants, and an overall mission plan,
which introduces temporal coupling between the different group plans. Based on a
strong controllability property of the mission plan, the algorithm compiles out the
coupling temporal constraints in the mission plan, in order for each sub-plant to be
able to execute its own group plan, without the need to communicate with other
sub-plants. This approach could be used to distribute the HMEx algorithm, when

the only coupling constraints in the qualitative state plans are temporal constraints.

7.1.2 Improvements on the Constraint Pruning Framework

In this section, we describe improvements on the HMEx algorithm that are specific to
the constraint pruning framework presented in Chapter 5. We first suggest a small,
incremental improvement on the pruning policies for temporal constraints, presented
in Section 5.3.1. We then introduce possible threads of future work that would require
more fundamental changes to the overall pruning framework, in order to make it more

efficient.

Incremental Improvement on the Temporal Constraint Pruning Policies

As mentioned in Section 5.3.1, the pruning policy for temporal constraints in the
qualitative state plan uses a method that consists of compiling out the constraints
that are irrelevant, given the current planning window. To do so, we explicitly encode
all binary temporal constraints between all events in the plan, and all unary temporal
constraints on any given event. Then, we can prune a constraint if it involves an event
that is guaranteed to be scheduled outside the current planning window, without loss
of correctness.

However, some of the remaining temporal constraints that have not been pruned
might be redundant. One could use an edge trimming algorithm similar to [17], on
the graph corresponding to the qualitative state plan, in order to further prune some
of the remaining temporal constraints, until no constraint can be pruned, without loss

of correctness. This method would effectively be equivalent to computing a minimal

141

dispatchable plan for the qualitative state plan, as described in Section 2.1.

This incremental improvement to the pruning policies for constraints imposed by
the qualitative state plan is likely to only lead to a small gain in efficiency. In the
following subsection, we describe how one could modify more radically the pruning

framework, in order to lead to greater improvements in efficiency.

Proposed Changes to the Pruning Framework

One possible improvement to the current pruning framework is motivated by the
following simple observation. Consider a forbidden region R in the plant’s state
space, and consider that the planning horizon is N; = 10 time steps. The plant is
required to remain outside of R at all time steps within the planning window; hence,
our current pruning policy for the corresponding HMEx constraint returns true, that
is, the constraint is prunable, if and only if R is out of reach of the plant within the
current planning horizon, in which case the plant is guaranteed to remain outside of R
at all time steps in [to, ty,]. However, consider the case when R is unreachable within
5 time steps, but becomes reachable at the 6th time step. In that case, the HMEx
constraint (Eq. (4.6)) would not be pruned by our current pruning policy, although
the part of Eq. (4.6) corresponding to the first 5 time steps could be pruned, since
the plant is guaranteed to remain outside of R during these first 5 time steps. This
suggests that, instead of applying the pruning policies to the HMEx constraint that
specifies that the plant should remain outside of R at all time steps, the policy should
be applied to the HMEx “sub-constraints” that specify that the plant should be
outside of R at a specific time step ¢, in the planning window.

More generally, this suggests a fundamental change to the current pruning frame-
work: rather than using pruning policies, in order to decide whether or not an HMEx
constraint can be pruned, one could instead apply simplification policies. In that
context, pruning or not pruning a constraint corresponds to two ends of a spectrum;
simplification policies would allow cases in the middle of that spectrum, where con-
straints might be pruned only partially. This idea applies to all HMEx constraints,

not only the constraints corresponding to forbidden regions in the state space, as

142

described in the previous paragraph. For instance, consider the HMEx constraint
that encodes an end in activity, ending at event eg (Eq. (4.25)). If the upper bound
on T'(eg) verifies T <t} — % for some time step ¢, in the planning window, then
it follows that T'(ep) is guaranteed to be strictly smaller than ¢, — £t, and Eq. (4.25)

can be simplified, by replacing the disjunct T'(eg) > ¢ — % by false, since it is guar-

anteed to be violated. This would correspond to simply removing T'(eg) > t, — %
from the disjunction. To do this in a systematic manner, one could design a routine
which would parse all the DLP constraints, and replace by true (or false) the linear

equalities or inequalities that are guaranteed to be satisfied (or violated, respectively).

The concept of a constraint simplification policy relates to similar ongoing work in
model-based programming for continuous, under-actuated plants [26]. As introduced
in Section 3.5.3, the model-based executive in [26] also takes in a qualitative state
plan. The executive then uses constraint tightening techniques based on an analysis
of the plant model, in order to tighten/simplify the constraints mentioned in the state
plan. For instance, consider an activity in the plan that specifies a goal region R for
the plant. Some parts of R might not be reachable by the plant, because they violate
one or more of the forbidden regions in the plant’s state space. These parts can
then be removed from R without loss of correctness; this can be done by replacing R
with the subtraction from R of all the regions in the set F of forbidden regions.
Temporal constraints can also be tightened; for instance, consider a “Remain in state
region R;” activity, followed by an “End in state region R,” activity, with lower
time bound 0. The lower time bound on the second activity can be tightened, by
computing an optimistic approximation of the time required by the plant to go from
Ry to Ry. This constraint tightening technique could be used to improve the pruning
framework presented in this thesis, by pruning state sequences that are allowed by

the qualitative state plan, but disallowed by the plant model.

Other work on knowledge compilation [20] could also be applied to make the
pruning process more efficient. Instead of systematically going through the list of all
the constraints in the DLP, and applying the pruning policies to each constraint in

order to determine whether or not it can be pruned, one could compile the constraints

143

into a hierarchical, spacial data structure, which would describe what part of the
state space is disallowed by each constraint. Using this pre-computed, structural
decomposition of the problem, one could more efficiently look up which constraints are

applicable and which constraints can be pruned, given the current planning window.

7.1.3 Integration with an HTN Planner

Finally, in this section, we present ongoing work aiming at integrating Sulu with a
model-based executive for contingent temporal plans, called Kirk [32], presented in
Section 2.2.1. Kirk has been designed to generate the input qualitative state plan for
Sulu, in very much the same way as a control sequencer is used to generate the input
for Titan’s Mode Reconfiguration component [66], described in Section 2.2.1. This
further elevates the level of interaction between the human operator and the plant,
by allowing the operator to control the plant through an RMPL program, which
describes the desired behavior of the plant, at a very high, abstract level. It also
provides more robustness to the system, by allowing it to recover from failures, when
the HMEx problem is found infeasible. When this happens, Sulu passes the reason
for infeasibility back to Kirk, which chooses a contingent sequence of activities to
execute, in order to recover from the failure. However, as mentioned in Section 2.2.1,
one important difference with [66] is that Titan is a purely reactive model-based
executive, while Kirk and Sulu are model-predictive, since they use a model of the
plant in order to plan control sequences into the future.

Section 3.5.3 also suggested the integration of Sulu with another model-based
executive introduced in [26], which would enable Sulu to be more robust to frequent,
low-level disturbances, by using classical PID controllers to control the plant, and

designing gains and setpoints for these controllers.

7.2 Conclusion

In this thesis, we have presented a receding horizon, hybrid, model-based executive,

called Sulu, which is capable of performing robust, model-based execution of tempo-

144

rally flexible plans, on continuous dynamical systems (or plants), such as cooperative
vehicles or chemical plants. Sulu enables the human operator to control the plant at
an abstract, task level, by specifying the desired state evolution of the plant, in the
form of a qualitative state plan. A qualitative state plan describes families of allowed
state trajectories for the plant. Sulu reasons over a model of the plant, in order to

continuously generate optimal trajectories that are consistent with this plan.

The main innovation in this thesis is that we perform temporal plan execution, on
under-actuated plants with continuous dynamics and hidden state. While previous
work has tackled the problem of temporal plan execution [7, 13, 49, 60, 61, 65], it has
only been applied to plants that are described using discrete models. Previous work in
model-based programming [66] also presented a framework to control under-actuated
systems with hidden state, but their model-based executive was designed only for
discrete systems. In this thesis, we have described how we extend these two threads
of research in order to handle plants with continuous dynamics. This includes hybrid
systems, whose continuous dynamics are dependent on discrete modes the plant can
be in. We use a receding horizon approach [10, 24, 39, 51, 52, 54, 57| in order to
perform robust execution of the qualitative state plans, and we achieve real-time

performance through the use of novel constraint pruning policies.

A qualitative state plan involves activities that specify abstract, qualitative regions
in the state space that the plant must go through. The plan pieces these activities
together in the form of a temporal plan, using flexible temporal constraints between
activities, in order to specify precedence constraints, and constraints on the duration
of activities and the time at which they must be performed. The use of such an
abstract, qualitative goal specification for the plant elevates the interaction with the
plant, so as to enable the human operator to perform high-level, supervisory control
of the system. It also delegates more control authority to the model-based executive,
giving it more opportunities to achieve the goal in an optimal fashion, and giving it

also more room to adapt to disturbances and unforeseen events.

Sulu formulates the problem of designing optimal control sequences for the plant

(HMEz problem) as a Disjunctive Linear Program (DLP). The DLP formalism is a

145

mixed logic/optimization mathematical formalism that enables us to encode both the
logical, decision-making component of HMEx, due to non-convex constraints imposed
by the plant model and the qualitative state plan, and its continuous, optimization
component, due to the continuous plant dynamics.

We achieve robustness and tractability by interleaving planning and execution,
following a receding horizon framework; this enables Sulu to plan partial control
sequences, and reactively revise these sequences in order to adapt to disturbances
and unforeseen events, by replanning regularly, taking into account the latest knowl-
edge about the state of the world. We use a set of novel constraint pruning policies
to enable real-time execution, by pruning some of the constraints in HMEx, and
hence, simplifying the problem. We demonstrated these capabilities on a real-time,

hardware-in-the-loop testbed, in the context of a multiple-UAV fire-fighting scenario.

146

Appendix A

Proof of Equivalence between the

Two State Equation Encodings in

Eq. (4.8) and (4.9)

In this appendix, we formally prove the equivalence between the intuitive encoding for
the plant state equation (Eq. (4.8)), and the encoding we use in the DLP (Eq. (4.9)).
It is important that the two encodings be perfectly equivalent, in order to make sure
that choosing one over the other does not introduce new solutions to the problem,
nor remove solutions from the original problem. For this purpose, we formally show

that the DLP formula in Eq. (4.8) is equal to the formula in Eq. (4.9).

Let p; be the proposition (s, u)(tx-1) € S, and g; be s(tx) = Fys,(s(tr—1), u(tp_1)).
Then Eq. (4.8) is equivalent to A, {/\J {p; = qj}}. Since S is a partition of S, it

147

must completely cover S, hence \/, p; = true. Therefore:

Njip; = 4} ={Vipi} A {/\~ {p; = Qj}}

pi {/\ {p) ;‘qj}}}

pi {/\- {-p; v qj}}}

{pi AN {=p; Vv qj}}}

{{pi A =i} v {pi A ai}} }

{0 A=pik v i Aah A Ay (o A b v i A
i A gk A Ags i A pi bV A A b)

=V, {pi A} A di}

7

i

A

N
Ay

(2

i

=V,
Vi
Vi
Vi
Vi
Vi

f—/h\/—’H/—/HF’Hr—Hf—’H

Furthermore, since S is a partition of S, —p; =V, 2i D for all j; therefore:

i = N {{Pz A {Vl;ﬁjpl}} Vv A{pi A Qj}}
= N {{ Vi e Am} v i A 3}

Since § is a partition of S, p; A p; is always false, except when ¢ = [; hence,

\/l# {pi N1} = pi A p; = pi, for all j # i. Therefore:

= /\{pi\/{pi/\Qj}} = /\pi =D

J7# J#i

One can then infer the following equality:
Nipi =4} =\ Hpirad Apt =\ {pi A aid
j i i

This concludes the proof, since Eq. (4.9) is equivalent to A, {V. {pi A ¢:}}.

148

Bibliography

1]
2]
3]

[4]

Cloudcap technology home page: www.cloudcaptech.com /piccolo_plus.htm.
llog CPLEX home page: www.ilog.com/products/cplex.
Aviation week & space technology 2005 source book, January 2005.

James F. Allen. Maintaining knowledge about temporal intervals. In Proceedings

of the ACM, pages 832-843, November 1983.

R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems.

Hybrid Systems, NLCS(736):209-229, 1993.

Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing

punctuality. Journal of the ACM, 43:116-146, 1996.

J. A. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitor-
ing. In Proceedings of the Seventh National Conference on Artificial Intelligence.
AAAI Press, 1988.

Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. Approximate
reachability analysis of piecewise-linear dynamical systems. In Proceedings of
the Third International Workshop on Hybrid Systems: Computation and Control
(HSCC-00), pages 20-31, 2000.

Egon Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3-51,

1979.

149

[10]

[13]

[14]

[17]

[18]

[19]

John Bellingham, Arthur Richards, and Jonathan How. Receding horizon control
of autonomous aerial vehicles. In Proceedings of the American Control Confer-

ence, 2002.

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1997.

Lars Blackmore, Stanislav Funiak, and Brian C. Williams. Combining stochas-
tic and gredy search in hybrid estimation. In Proceedings of the 20th National
Conference on Artificial Intelligence, 2005.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iter-
ative repair to improve responsiveness of planning and scheduling. In Proceed-
ings of the Fifth International Conference on Artificial Intelligence Planning and
Scheduling, Breckenridge, CO, April 2000.

F. J. Christophersen, M. Baoti¢, and M. Morari. Optimal Control of Piecewise
Affine Systems: A Dynamic Programming Approach. Technical Report AUTO05-
04, Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH),
May 2005.

CloudCap Technologies. CloudCap Piccolo Quick Setup Guide, 10 2002.

T. Dang and O. Maler. Reachability analysis via face lifting. In Hybrid Systems:
Computation and Control, 1998.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial

Intelligence Journal, 1991.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing
generalized robot plans. Artificial Intelligence, 3:251-288, 1972.

C.A. Floudas. Nonlinear and Mized-Integer Programming - Fundamentals and

Applications. Oxford University Press, 1995.

150

[20]

H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a-priori
tree structures. In Proceedings of SIGGRAPH’80, pages 124-133, 1980.

Carlos E. Garcia. Advances in industrial model-predictive control. In Chemical

Process Control (CPC-III), 1986.

M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projec-
tions. In Hybrid Systems: Computation and Control, 1999.

Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS ’96), 1996.

David S. Hirshfeld. Mathematical programming and the planning, scheduling,

and control of process operations. Computer Aided Process Operations, 1987.

M. W. Hofbaur and B. C. Williams. Hybrid estimation of complex systems.
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,
2004.

Andreas Hofmann. Safe execution of bipedal walking tasks from biomechanical

principles. Master’s thesis, MIT, 2005.

I hsiang Shu. Enabling fast flexible planning through incremental temporal rea-

soning. Master’s thesis, MIT, 2002.

Henry Kautz, David McAllester, and Bart Selman. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In Proceedings of AAAI-96,
1996.

Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of

ECAI-92, 1992.

Henry Kautz and Bart Selman. Encoding plans in propositional logic. In Pro-

ceedings of KR-96, 1996.

Henry Kautz and Bart Selman. Unifying sat-based and graph-based planning.
In Proceedings of 1JCAI-99, 1999.

151

[32]

[36]

[37]

[41]

P. Kim, B.C. Williams, and M. Abramson. Executing reactive, model-based
programs through graph-based temporal planning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI-01), 2001.

Philip K. Kim. Model-based planning for coordinated air vehicle missions. Mas-

ter’s thesis, MIT, 2000.

Raj Krishnan. Solving hybrid decision-control problems through conflict-directed
branch and bound. Master’s thesis, MIT, 2004.

Benjamin Kuipers and Karl Astrém. The composition of heterogeneous control
laws. In Proceedings of the 1991 American Control Conference (AAC-91), June
1991.

Benjamin Kuipers and Karl Astrém. The composition and validation of hetero-

geneous control laws. Automatica, 30(2):233-249, 1994.

Benjamin Kuipers and Subramanian Ramamoorthy. Qualitative modeling and
heterogeneous control of global system behavior. In Proceedings of the 2002
International Workshop on Hybrid Systems: Computation and Control (HSCC-
02), 2002.

A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability anal-
ysis. Optimization: methods and software, 9 2000.

Yoshiaki Kuwata. Real-time trajectory design for unmanned aerial vehicles using

receding horizon control. Master’s thesis, MIT, 2003.

Gerardo Lafferriere and ChrisMiller. Uniform reachability algorithms. In Pro-
ceedings of the 2000 International Workshop on Hybrid Systems: Computation
and Control (HSCC-00), pages 215-228, 2000.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, 1999.

152

[42]

[43]

[44]

[45]

Hui Li. Generalized conflict learning for hybrid discrete linear optimization.

Master’s thesis, MIT, 2005.

Hui Li and Brian C. Williams. Efficiently solving hybrid logic/optimization prob-
lems through generalized conflict learning. ICAPS Workshop ‘Plan Execution:
A Reality Check’. http://mers.csail.mit.edu/mers-publications.htm, 2005.

D. Long and M. Fox. Exploiting a graphplan framework in temporal planning.
In Proceedings of ICAPS’03, pages 51-62, 2003.

Tomas Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Commun. ACM, 22(10):560-570, 1979.
Matthew T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

G. Mitra, I. Hai, and M.T. Hajian. A distributed processing algorithm for solving
integer programs using a cluster of workstations. Parallel Computing, 3(6), 6

1997.

P. Morris and N. Muscettola. Execution of temporal plans with uncertainty. In

Proceedings of AAAI-2000, pages 491-496, 2000.

P. Morris, N. Muscettola, and I. Tsamardinos. Reformulating temporal plans for
efficient execution. In Proceedings of the International Conference on Principles

of Knowledge Representation and Reasoning, pages 444-452, 1998.

P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal
uncertainty. In Proceedings of IJCAI-01, pages 494-502, 2001.

Larry Popiel, Ted Matsko, and Coleman Brosilow. Coordinated control. In
Chemical Process Control (CPC-III), 1986.

A. 1. Propoi. Use of linear programming methods for synthesizing sampled-data

automatic systems. Automation and Remote Control, 24(7):837-844, 1963.

153

[53]

[54]

[55]

[58]

[59]

Subramanian Ramamoorthy and Benjamin Kuipers. Qualitative heterogeneous
control of higher oder systems. In Proceedings of the 2003 International Work-
shop on Hybrid Systems: Computation and Control (HSCC-03), 2003,

J. Richalet, A. Rault, J.L. Testud, and J. Papon. Algorithmic control of indus-
trial processes. In Proceedings of the Jth IFAC Symposium on Identification and
System Parameter Estimation, pages 1119-1167, 1976.

A. Richards, J. How, T. Schouwenaars, and E. Féron. Plume avoidance maneuver
planning using mixed integer linear programming. In Proceedings of AIAA-2001,

2001.

Arthur Richards and Jonathan How. Model predictive control of vehicle maneu-
vers with guaranteed completion time and robust feasibility. In Proceedings of

the 2003 American Control Conference, 2003.

Tom Schouwenaars, Bart De Moor, Eric Féron, and Jonathan How. Mixed
integer programming for multi-vehicle path planning. In Proceedings of the ECC
Conference, 2001.

John Stedl. Managing temporal uncertainty under limited communication: A
formal model of tight and loose team communication. Master’s thesis, MIT,

2004.

Ashish Tiwari. Approximate reachability for linear systems. In Proceedings of
the Sixth International Workshop on Hybrid Systems: Computation and Control
(HSCC), pages 514-525, 2003.

loannis Tsamardinos, Martha E. Pollack, and Sailesh Ramakrishnan. Assessing
the probability of legal execution of plans with temporal uncertainty. In Proceed-
ings of the 13th International Conference on Automatic Planning and Scheduling,

2003.

154

[61]

[62]

[63]

[64]

[66]

[67]

T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal con-
straint networks dedicated to planning. In Proceedings of the 12th FEuropean
Conference on Artificial Intelligence (ECAI-96), pages 48-52, 1996.

M. Villain and H. Kautz. Constraint propagation algorithms for temporal rea-

soning. In Proceedings of the AAAI-86, pages 377-382, 1986.

Aisha Walcott. Unifying model-based programming and randomized path plan-
ning though optimal search. Master’s thesis, MIT, 2004.

Andreas Frederik Wehowsky. Safe distributed coordination of heterogeneous

robots through dynamic simple temporal networks. Master’s thesis, MIT, 2003.

D. E. Wilkins and K. L. Myers. A common knowledge representation for plan
generation and reactive execution. Journal of Logic and Computation, 5(6):731—

761, December 1995.

B. C. Williams, Michel Ingham, Seung H. Chung, and Paul H. Elliott. Model-
based programming of intelligent embedded systems and robotic space explorers.
In Proceedings of the IEEE: Special Issue on Modeling and Design of Embedded
Software, 2003.

Brian C. Williams and P. Pandurang Nayak. Immobile robots: Artificial in-
telligence in the new millennium. Cover article of AI Magazine, 17(3):16-35,
1996.

155

